2.2.54 Problems 5301 to 5400

Table 2.121: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

5301

\begin{align*} \left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

24.980

5302

\begin{align*} \left (x^{3}+a y^{3}\right ) y^{\prime }&=x^{2} y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.249

5303

\begin{align*} x y^{3} y^{\prime }&=\left (-x^{2}+1\right ) \left (1+y^{2}\right ) \\ \end{align*}

[_separable]

3.898

5304

\begin{align*} x \left (x -y^{3}\right ) y^{\prime }&=\left (3 x +y^{3}\right ) y \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

9.044

5305

\begin{align*} x \left (2 x^{3}+y^{3}\right ) y^{\prime }&=\left (2 x^{3}-x^{2} y+y^{3}\right ) y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

10.457

5306

\begin{align*} x \left (2 x^{3}-y^{3}\right ) y^{\prime }&=\left (x^{3}-2 y^{3}\right ) y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

21.809

5307

\begin{align*} x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime }&=\left (3 x^{2}+y^{2}\right ) y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

13.329

5308

\begin{align*} x \left (x^{3}-2 y^{3}\right ) y^{\prime }&=\left (2 x^{3}-y^{3}\right ) y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

9.938

5309

\begin{align*} x \left (x^{4}-2 y^{3}\right ) y^{\prime }+\left (2 x^{4}+y^{3}\right ) y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

6.421

5310

\begin{align*} x \left (x +y+2 y^{3}\right ) y^{\prime }&=y \left (x -y\right ) \\ \end{align*}

[_rational]

2.420

5311

\begin{align*} \left (5 x -y-7 x y^{3}\right ) y^{\prime }+5 y-y^{4}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.437

5312

\begin{align*} x \left (1-2 x y^{3}\right ) y^{\prime }+\left (1-2 x^{3} y\right ) y&=0 \\ \end{align*}

[_rational]

2.168

5313

\begin{align*} x \left (2-x y^{2}-2 x y^{3}\right ) y^{\prime }+1+2 y&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.540

5314

\begin{align*} \left (2-10 x^{2} y^{3}+3 y^{2}\right ) y^{\prime }&=x \left (1+5 y^{4}\right ) \\ \end{align*}

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.181

5315

\begin{align*} x \left (a +y^{3} b x \right ) y^{\prime }+\left (a +c \,x^{3} y\right ) y&=0 \\ \end{align*}

[_rational]

2.533

5316

\begin{align*} x \left (1-2 x^{2} y^{3}\right ) y^{\prime }+\left (1-2 x^{3} y^{2}\right ) y&=0 \\ \end{align*}

[_rational]

2.036

5317

\begin{align*} x \left (-y x +1\right ) \left (1-y^{2} x^{2}\right ) y^{\prime }+\left (y x +1\right ) \left (1+y^{2} x^{2}\right ) y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.334

5318

\begin{align*} \left (x^{2}-y^{4}\right ) y^{\prime }&=y x \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

7.872

5319

\begin{align*} \left (x^{3}-y^{4}\right ) y^{\prime }&=3 x^{2} y \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

8.873

5320

\begin{align*} \left (a^{2} x^{2}+\left (x^{2}+y^{2}\right )^{2}\right ) y^{\prime }&=a^{2} x y \\ \end{align*}

[_rational]

9.386

5321

\begin{align*} 2 \left (x -y^{4}\right ) y^{\prime }&=y \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

7.464

5322

\begin{align*} \left (4 x -x y^{3}-2 y^{4}\right ) y^{\prime }&=\left (2+y^{3}\right ) y \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.980

5323

\begin{align*} \left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+y^{3} b \right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

22.097

5324

\begin{align*} \left (x +2 y+2 x^{2} y^{3}+y^{4} x \right ) y^{\prime }+\left (1+y^{4}\right ) y&=0 \\ \end{align*}

[_rational]

4.585

5325

\begin{align*} 2 x \left (x^{3}+y^{4}\right ) y^{\prime }&=\left (x^{3}+2 y^{4}\right ) y \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

10.255

5326

\begin{align*} x \left (1-x^{2} y^{4}\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

9.375

5327

\begin{align*} \left (x^{2}-y^{5}\right ) y^{\prime }&=2 y x \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

8.507

5328

\begin{align*} x \left (x^{3}+y^{5}\right ) y^{\prime }&=\left (x^{3}-y^{5}\right ) y \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

7.559

5329

\begin{align*} x^{3} \left (1+5 x^{3} y^{7}\right ) y^{\prime }+\left (3 x^{5} y^{5}-1\right ) y^{3}&=0 \\ \end{align*}

[_rational]

2.137

5330

\begin{align*} \left (1+a \left (x +y\right )\right )^{n} y^{\prime }+a \left (x +y\right )^{n}&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

4.138

5331

\begin{align*} x \left (a +x y^{n}\right ) y^{\prime }+b y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

5.099

5332

\begin{align*} f \left (x \right ) y^{m} y^{\prime }+g \left (x \right ) y^{m +1}+h \left (x \right ) y^{n}&=0 \\ \end{align*}

[_Bernoulli]

6.849

5333

\begin{align*} y^{\prime } \sqrt {b^{2}+y^{2}}&=\sqrt {a^{2}+x^{2}} \\ \end{align*}

[_separable]

3.429

5334

\begin{align*} y^{\prime } \sqrt {b^{2}-y^{2}}&=\sqrt {a^{2}-x^{2}} \\ \end{align*}

[_separable]

3.959

5335

\begin{align*} \left (1+\sqrt {x +y}\right ) y^{\prime }+1&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.966

5336

\begin{align*} y^{\prime } \sqrt {y x}+x -y&=\sqrt {y x} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

33.167

5337

\begin{align*} \left (x -2 \sqrt {y x}\right ) y^{\prime }&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

18.121

5338

\begin{align*} \left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime }&=1+y^{2} \\ \end{align*}

[_separable]

4.077

5339

\begin{align*} \left (y+\sqrt {1+y^{2}}\right ) \left (x^{2}+1\right )^{{3}/{2}} y^{\prime }&=1+y^{2} \\ \end{align*}

[_separable]

3.690

5340

\begin{align*} \left (x -\sqrt {x^{2}+y^{2}}\right ) y^{\prime }&=y \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

21.659

5341

\begin{align*} x \left (1-\sqrt {x^{2}-y^{2}}\right ) y^{\prime }&=y \\ \end{align*}

[‘y=_G(x,y’)‘]

2.568

5342

\begin{align*} x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime }+y \sqrt {x^{2}+y^{2}}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _dAlembert]

22.734

5343

\begin{align*} x y \left (x +\sqrt {x^{2}-y^{2}}\right ) y^{\prime }&=x y^{2}-\left (x^{2}-y^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

12.964

5344

\begin{align*} \left (x \sqrt {1+x^{2}+y^{2}}-y \left (x^{2}+y^{2}\right )\right ) y^{\prime }&=\left (x^{2}+y^{2}\right ) x +y \sqrt {1+x^{2}+y^{2}} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

4.497

5345

\begin{align*} y^{\prime } \cos \left (y\right ) \left (\cos \left (y\right )-\sin \left (A \right ) \sin \left (x \right )\right )+\cos \left (x \right ) \left (\cos \left (x \right )-\sin \left (A \right ) \sin \left (y\right )\right )&=0 \\ \end{align*}

unknown

120.809

5346

\begin{align*} \left (a \cos \left (a y+b x \right )-b \sin \left (a x +b y\right )\right ) y^{\prime }+b \cos \left (a y+b x \right )-a \sin \left (a x +b y\right )&=0 \\ \end{align*}

[_exact]

3.371

5347

\begin{align*} \left (x +\sec \left (y\right ) \cos \left (x \right )\right ) y^{\prime }+\tan \left (y\right )-y \sin \left (x \right ) \sec \left (y\right )&=0 \\ \end{align*}

[NONE]

79.955

5348

\begin{align*} \left (1+\left (x +y\right ) \tan \left (y\right )\right ) y^{\prime }+1&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.747

5349

\begin{align*} x \left (x -\tan \left (\frac {y}{x}\right ) y\right ) y^{\prime }+\left (x +\tan \left (\frac {y}{x}\right ) y\right ) y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

8.018

5350

\begin{align*} \left ({\mathrm e}^{x}+x \,{\mathrm e}^{y}\right ) y^{\prime }+{\mathrm e}^{x} y+{\mathrm e}^{y}&=0 \\ \end{align*}

[_exact]

2.235

5351

\begin{align*} \left (1-2 x -\ln \left (y\right )\right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

2.739

5352

\begin{align*} \left (\sinh \left (x \right )+x \cosh \left (y\right )\right ) y^{\prime }+y \cosh \left (x \right )+\sinh \left (y\right )&=0 \\ \end{align*}

[_exact]

70.926

5353

\begin{align*} y^{\prime } \left (1+\sinh \left (x \right )\right ) \sinh \left (y\right )+\cosh \left (x \right ) \left (\cosh \left (y\right )-1\right )&=0 \\ \end{align*}

[_separable]

5.839

5354

\begin{align*} {y^{\prime }}^{2}&=a \,x^{n} \\ \end{align*}

[_quadrature]

1.892

5355

\begin{align*} {y^{\prime }}^{2}&=y \\ \end{align*}

[_quadrature]

0.837

5356

\begin{align*} {y^{\prime }}^{2}&=x -y \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.214

5357

\begin{align*} {y^{\prime }}^{2}&=y+x^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

3.020

5358

\begin{align*} {y^{\prime }}^{2}+x^{2}&=4 y \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.598

5359

\begin{align*} {y^{\prime }}^{2}+3 x^{2}&=8 y \\ \end{align*}

[[_homogeneous, ‘class G‘]]

2.970

5360

\begin{align*} {y^{\prime }}^{2}+a \,x^{2}+b y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

2.961

5361

\begin{align*} {y^{\prime }}^{2}&=1+y^{2} \\ \end{align*}

[_quadrature]

1.276

5362

\begin{align*} {y^{\prime }}^{2}&=1-y^{2} \\ \end{align*}

[_quadrature]

0.941

5363

\begin{align*} {y^{\prime }}^{2}&=a^{2}-y^{2} \\ \end{align*}

[_quadrature]

1.031

5364

\begin{align*} {y^{\prime }}^{2}&=a^{2} y^{2} \\ \end{align*}

[_quadrature]

0.736

5365

\begin{align*} {y^{\prime }}^{2}&=a +b y^{2} \\ \end{align*}

[_quadrature]

2.161

5366

\begin{align*} {y^{\prime }}^{2}&=y^{2} x^{2} \\ \end{align*}

[_separable]

0.143

5367

\begin{align*} {y^{\prime }}^{2}&=\left (-1+y\right ) y^{2} \\ \end{align*}

[_quadrature]

6.253

5368

\begin{align*} {y^{\prime }}^{2}&=\left (y-a \right ) \left (y-b \right ) \left (y-c \right ) \\ \end{align*}

[_quadrature]

274.990

5369

\begin{align*} {y^{\prime }}^{2}&=a^{2} y^{n} \\ \end{align*}

[_quadrature]

5.938

5370

\begin{align*} {y^{\prime }}^{2}&=a^{2} \left (1-\ln \left (y\right )^{2}\right ) y^{2} \\ \end{align*}

[_quadrature]

2.663

5371

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.389

5372

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.626

5373

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right ) \left (y-b \right ) \left (y-c \right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.912

5374

\begin{align*} {y^{\prime }}^{2}+f \left (x \right ) \left (y-a \right )^{2} \left (y-b \right ) \left (y-c \right )&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.244

5375

\begin{align*} {y^{\prime }}^{2}&=f \left (x \right )^{2} \left (y-a \right ) \left (y-b \right ) \left (y-c \right )^{2} \\ \end{align*}

[_separable]

2.203

5376

\begin{align*} {y^{\prime }}^{2}&=f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \\ \end{align*}

[‘y=_G(x,y’)‘]

16.783

5377

\begin{align*} {y^{\prime }}^{2}+2 y^{\prime }+x&=0 \\ \end{align*}

[_quadrature]

0.228

5378

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime }+a \left (x -y\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.441

5379

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime }-y^{2}&=0 \\ \end{align*}

[_quadrature]

146.064

5380

\begin{align*} {y^{\prime }}^{2}-5 y^{\prime }+6&=0 \\ \end{align*}

[_quadrature]

0.278

5381

\begin{align*} {y^{\prime }}^{2}-7 y^{\prime }+12&=0 \\ \end{align*}

[_quadrature]

0.194

5382

\begin{align*} {y^{\prime }}^{2}+a y^{\prime }+b&=0 \\ \end{align*}

[_quadrature]

0.283

5383

\begin{align*} {y^{\prime }}^{2}+a y^{\prime }+b x&=0 \\ \end{align*}

[_quadrature]

0.279

5384

\begin{align*} {y^{\prime }}^{2}+a y^{\prime }+b y&=0 \\ \end{align*}

[_quadrature]

1.336

5385

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x +1&=0 \\ \end{align*}

[_quadrature]

0.526

5386

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.214

5387

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.242

5388

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.009

5389

\begin{align*} {y^{\prime }}^{2}+y^{\prime } x +x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.973

5390

\begin{align*} {y^{\prime }}^{2}+\left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.211

5391

\begin{align*} {y^{\prime }}^{2}-\left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.210

5392

\begin{align*} {y^{\prime }}^{2}-\left (-x +2\right ) y^{\prime }+1-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.234

5393

\begin{align*} {y^{\prime }}^{2}+\left (a +x \right ) y^{\prime }-y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.215

5394

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime } x +1&=0 \\ \end{align*}

[_quadrature]

0.503

5395

\begin{align*} {y^{\prime }}^{2}+2 y^{\prime } x -3 x^{2}&=0 \\ \end{align*}

[_quadrature]

0.194

5396

\begin{align*} {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.392

5397

\begin{align*} {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.322

5398

\begin{align*} {y^{\prime }}^{2}-2 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.210

5399

\begin{align*} {y^{\prime }}^{2}-\left (2 x +1\right ) y^{\prime }-x \left (1-x \right )&=0 \\ \end{align*}

[_quadrature]

1.284

5400

\begin{align*} {y^{\prime }}^{2}+2 \left (1-x \right ) y^{\prime }-2 x +2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.944