2.2.61 Problems 6001 to 6100

Table 2.123: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6001

r=kr2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

66.330

6002

y=3ky22

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.692

6003

y=2ky3

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5.739

6004

yy+y2y=0

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.860

6005

r=h2r3kr2

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.589

6006

yy+y3y2=0

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.487

6007

yy3y2=0

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.526

6008

(x2+1)y+y2+1=0

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.825

6009

(x2+1)y+2x(y+1)=0

[[_2nd_order, _missing_y]]

1.405

6010

(y+1)y=3y2
i.c.

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.590

6011

y=yey
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

2.502

6012

y=2yy
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

13.908

6013

2y=ey
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.305

6014

x2y+xy=1
i.c.

[[_2nd_order, _missing_y]]

1.089

6015

xyy=x2
i.c.

[[_2nd_order, _missing_y]]

1.419

6016

xyy2xy2+yy=0

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.187

6017

xyy+xy2yy=0

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.177

6018

xyy2xy2+(y+1)y=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.124

6019

ay3bx3/2+y=0

[[_homogeneous, ‘class G‘], _rational, _Abel]

4.980

6020

axy3+by2+y=0

[[_homogeneous, ‘class G‘], _Abel]

2.475

6021

yxay3+3y2xayx2a+axa1=0

[_Abel]

3.372

6022

y(yf(x))(yg(x))(yaf(x)+bg(x)a+b)h(x)f(x)(yg(x))f(x)g(x)g(x)(yf(x))g(x)f(x)=0

[_Abel]

108.821

6023

x2y+xy3+ay2=0

[_rational, _Abel]

0.889

6024

(ax+b)2y+(ax+b)y3+cy2=0

[_rational, _Abel]

2.217

6025

y+ytan(x)=0

[_separable]

1.794

6026

x2y2xy+2y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.979

6027

yy2+2xyy=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.876

6028

(x2+1)y2+1=0

[_quadrature]

0.360

6029

y=eax+ay

[[_linear, ‘class A‘]]

0.767

6030

(1+y2)3=a2y2

[[_2nd_order, _missing_x]]

205.148

6031

(x+1)y+(1y)xy=0

[_separable]

1.495

6032

y=ay2x

[_separable]

1.448

6033

y2+xy2+(x2x2y)y=0

[_separable]

1.760

6034

xy(x2+1)y=1+y2

[_separable]

4.317

6035

xy+1=yyx+1

[_separable]

1.596

6036

y+b2y2=a2

[_quadrature]

3.583

6037

y=1+y2x2+1

[_separable]

2.274

6038

sin(x)cos(y)=cos(x)sin(y)y

[_separable]

3.194

6039

axy+2y=xyy

[_separable]

1.662

6040

xy+(x+n)y+(n+1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.774

6041

y+xy=0

[[_Emden, _Fowler]]

0.228

6042

2x2yxy+(x2+1)y=x2

[[_2nd_order, _linear, _nonhomogeneous]]

0.698

6043

xy+2y+a3x2y=2

[[_2nd_order, _linear, _nonhomogeneous]]

0.644

6044

y+ax2y=x+1

[[_2nd_order, _linear, _nonhomogeneous]]

0.351

6045

x4y+xy+y=0

[[_2nd_order, _with_linear_symmetries]]

0.153

6046

x2y+(2x2+x)y4y=0

[[_2nd_order, _with_linear_symmetries]]

0.733

6047

(x2+x)y+3y+2y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

0.697

6048

(4x314x22x)y(6x27x+1)y+(6x1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.783

6049

x2y+x2y+(2+x)y=0

[[_2nd_order, _with_linear_symmetries]]

0.704

6050

x2yx2y+(2+x)y=0

[[_2nd_order, _with_linear_symmetries]]

0.695

6051

x2(14x)y+((1n)x(64n)x2)y+n(1n)xy=0

[[_2nd_order, _with_linear_symmetries]]

0.900

6052

x2y+(x2+x)y+(x9)y=0

[[_2nd_order, _with_linear_symmetries]]

0.828

6053

(a2+x2)y+xyn2y=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.533

6054

(x2+1)yxy+a2y=0

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.518

6055

xy+y+y=0

[[_Emden, _Fowler]]

0.497

6056

xy+y+pxy=0

[[_2nd_order, _with_linear_symmetries]]

0.444

6057

xy+y=0

[[_Emden, _Fowler]]

1.033

6058

x3y(2x1)y=0

[[_2nd_order, _with_linear_symmetries]]

0.092

6059

x2y+x(x+1)y+(3x1)y=0

[[_2nd_order, _with_linear_symmetries]]

1.380

6060

(x2+x)yy=0

[[_2nd_order, _with_linear_symmetries]]

1.219

6061

x(x2+1)y+(3x2+1)yxy=0

[[_elliptic, _class_I]]

0.479

6062

y+ayx3/2=0

[[_Emden, _Fowler]]

0.147

6063

x2y(x2+4x)y+4y=0

[[_2nd_order, _with_linear_symmetries]]

1.346

6064

x(x2+1)y+(x2+1)y+xy=0

[[_elliptic, _class_II]]

0.487

6065

4x(1x)y4yy=0

[_Jacobi]

1.391

6066

x3y+y=x3/2

[[_2nd_order, _linear, _nonhomogeneous]]

0.105

6067

2x2y(3x+2)y+(2x1)yx=x

[[_2nd_order, _linear, _nonhomogeneous]]

0.125

6068

(x2+x)y+3y+2y=3x2

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

0.798

6069

x(1x)y+(322x)yy4=0

[_Jacobi]

0.725

6070

2x(1x)y+xyy=0

[[_2nd_order, _with_linear_symmetries]]

1.336

6071

2x(1x)y+(111x)y10y=0

[_Jacobi]

0.726

6072

x(1x)y+(12x)y3+20y9=0

[_Jacobi]

0.737

6073

2x(1x)y+y+4y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

0.697

6074

4y+3(x2+2)y(x2+1)2=0

[[_2nd_order, _with_linear_symmetries]]

0.432

6075

y+y2=a2x4

[_rational, _Riccati]

1.638

6076

ua2ux2/3=0

[[_Emden, _Fowler]]

0.667

6077

u2uxa2u=0

[[_2nd_order, _with_linear_symmetries]]

1.165

6078

u+2uxa2u=0

[[_2nd_order, _with_linear_symmetries]]

1.175

6079

u+2ux+a2u=0

[[_2nd_order, _with_linear_symmetries]]

2.287

6080

u+4uxa2u=0

[[_2nd_order, _with_linear_symmetries]]

3.815

6081

u+4ux+a2u=0

[[_2nd_order, _with_linear_symmetries]]

2.663

6082

ya2y=6yx2

[[_2nd_order, _with_linear_symmetries]]

5.316

6083

y+n2y=6yx2

[[_2nd_order, _with_linear_symmetries]]

3.208

6084

x2y+xy(x2+14)y=0

[[_2nd_order, _with_linear_symmetries]]

1.106

6085

x2y+xy+(9a2+4x2)y4a2=0

[[_2nd_order, _with_linear_symmetries]]

3.144

6086

x2y+xy+(x2254)y=0

[[_2nd_order, _with_linear_symmetries]]

1.899

6087

y+qy=2yx2

[[_2nd_order, _with_linear_symmetries]]

0.959

6088

y+e2xy=n2y

[[_2nd_order, _with_linear_symmetries]]

0.453

6089

y+y4x=0

[[_Emden, _Fowler]]

0.574

6090

xy+y+y=0

[[_Emden, _Fowler]]

0.493

6091

xy+3y+4x3y=0

[[_Emden, _Fowler]]

2.104

6092

y=y

[_quadrature]

1.528

6093

xy=y
i.c.

[_separable]

2.029

6094

x1y2+yx2+1y=0
i.c.

[_separable]

7.838

6095

sin(x)y=yln(y)
i.c.

[_separable]

16.326

6096

1+y2+xyy=0
i.c.

[_separable]

3.221

6097

xyyxy=y
i.c.

[_quadrature]

0.962

6098

y=2xy2+xx2yy
i.c.

[_separable]

2.790

6099

yy+xy28x=0
i.c.

[_separable]

3.589

6100

y+2xy2=0
i.c.

[_separable]

2.492