2.2.62 Problems 6101 to 6200

Table 2.125: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6101

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.969

6102

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x = x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

0.903

6103

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

[_linear]

1.110

6104

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

0.225

6105

\[ {}y^{\prime }+2 y = 2 \]
i.c.

[_quadrature]

0.216

6106

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]
i.c.

[[_linear, ‘class A‘]]

0.273

6107

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.261

6108

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.348

6109

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.304

6110

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.414

6111

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.349

6112

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.463

6113

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.378

6114

\[ {}y^{\prime \prime }+5 y^{\prime }-3 y = \operatorname {Heaviside}\left (x -4\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.425

6115

\[ {}y^{\prime \prime \prime }-y = 5 \]
i.c.

[[_3rd_order, _missing_x]]

0.385

6116

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.278

6117

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x^{2} {\mathrm e}^{x} \]
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

0.251

6118

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.279

6119

\[ {}q^{\prime \prime }+9 q^{\prime }+14 q = \frac {\sin \left (t \right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.366

6120

\[ {}\left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.774

6121

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.097

6122

\[ {}y^{\prime \prime }+y x = 0 \]

[[_Emden, _Fowler]]

0.442

6123

\[ {}y^{\prime \prime }-2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.538

6124

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.540

6125

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.520

6126

\[ {}y^{\prime \prime }+2 x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.479

6127

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.556

6128

\[ {}y^{\prime \prime }-y x = 0 \]

[[_Emden, _Fowler]]

0.433

6129

\[ {}y^{\prime \prime }-2 y^{\prime } x +x^{2} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.542

6130

\[ {}y^{\prime } x = 2 y \]

[_separable]

1.603

6131

\[ {}x +y y^{\prime } = 0 \]

[_separable]

2.587

6132

\[ {}y = y^{\prime } x +{y^{\prime }}^{4} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.602

6133

\[ {}2 x^{3} y^{\prime } = y \left (y^{2}+3 x^{2}\right ) \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

80.528

6134

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.748

6135

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.200

6136

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.796

6137

\[ {}y^{\prime \prime }-y = 4-x \]

[[_2nd_order, _with_linear_symmetries]]

0.888

6138

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

0.717

6139

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \,{\mathrm e}^{x} \left (1-x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.981

6140

\[ {}4 y+y^{\prime } x = 0 \]

[_separable]

1.454

6141

\[ {}1+2 y+\left (-x^{2}+4\right ) y^{\prime } = 0 \]

[_separable]

1.295

6142

\[ {}y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

2.023

6143

\[ {}1+y-\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

1.267

6144

\[ {}x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.410

6145

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.452

6146

\[ {}y^{2} \left (x^{2}+2\right )+\left (x^{3}+y^{3}\right ) \left (y-y^{\prime } x \right ) = 0 \]

[[_homogeneous, ‘class D‘], _rational]

1.637

6147

\[ {}y \sqrt {x^{2}+y^{2}}-x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _dAlembert]

4.516

6148

\[ {}x +y+1+\left (2 x +2 y+1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.246

6149

\[ {}1+2 y-\left (4-x \right ) y^{\prime } = 0 \]

[_separable]

1.373

6150

\[ {}\left (x^{2}+1\right ) y^{\prime }+y x = 0 \]

[_separable]

1.182

6151

\[ {}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.976

6152

\[ {}2 y^{\prime } x -2 y = \sqrt {x^{2}+4 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.108

6153

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.290

6154

\[ {}x y y^{\prime } = \left (1+y\right ) \left (1-x \right ) \]

[_separable]

1.162

6155

\[ {}y^{2}-x^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.253

6156

\[ {}y \left (2 y x +1\right )+x \left (1-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.558

6157

\[ {}1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime } = 0 \]

[_separable]

1.849

6158

\[ {}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

8.584

6159

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.282

6160

\[ {}y^{\prime } x +2 y = 0 \]
i.c.

[_separable]

1.908

6161

\[ {}x^{2}+y^{2}+x y y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.404

6162

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.470

6163

\[ {}y^{2}+y x -y^{\prime } x = 0 \]
i.c.

[_rational, _Bernoulli]

1.475

6164

\[ {}y^{\prime } = -2 \left (2 x +3 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

9.362

6165

\[ {}x -2 \sin \left (y\right )+3+\left (2 x -4 \sin \left (y\right )-3\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3.294

6166

\[ {}x^{2}-y-y^{\prime } x = 0 \]

[_linear]

0.156

6167

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

0.305

6168

\[ {}x +y \cos \left (x \right )+\sin \left (x \right ) y^{\prime } = 0 \]

[_linear]

0.178

6169

\[ {}2 x +3 y+4+\left (3 x +4 y+5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.305

6170

\[ {}4 x^{3} y^{3}+\frac {1}{x}+\left (3 x^{4} y^{2}-\frac {1}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

0.434

6171

\[ {}2 u^{2}+2 u v+\left (u^{2}+v^{2}\right ) v^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.243

6172

\[ {}x \sqrt {x^{2}+y^{2}}-y+\left (y \sqrt {x^{2}+y^{2}}-x \right ) y^{\prime } = 0 \]

[_exact]

0.301

6173

\[ {}x +y+1-\left (y-x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.290

6174

\[ {}y^{2}-\frac {y}{x \left (x +y\right )}+2+\left (\frac {1}{x +y}+2 y \left (x +1\right )\right ) y^{\prime } = 0 \]

[_exact, _rational]

0.329

6175

\[ {}2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime } = 0 \]

[_exact]

0.301

6176

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.842

6177

\[ {}x^{2}+y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.356

6178

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

3.637

6179

\[ {}1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0 \]

[_quadrature]

0.418

6180

\[ {}x +y+1-\left (x -y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.701

6181

\[ {}x -x^{2}-y^{2}+y y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

0.354

6182

\[ {}2 y-3 x +y^{\prime } x = 0 \]

[_linear]

0.175

6183

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.309

6184

\[ {}-y-3 x^{2} \left (x^{2}+y^{2}\right )+y^{\prime } x = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

0.359

6185

\[ {}y-\ln \left (x \right )-y^{\prime } x = 0 \]

[_linear]

0.186

6186

\[ {}3 x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

0.295

6187

\[ {}y x -2 y^{2}-\left (x^{2}-3 y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.480

6188

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.355

6189

\[ {}2 y-3 x y^{2}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.704

6190

\[ {}y+x \left (x^{2} y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.282

6191

\[ {}y+x^{3} y+2 x^{2}+\left (x +4 x y^{4}+8 y^{3}\right ) y^{\prime } = 0 \]

[_rational]

0.296

6192

\[ {}-y-x^{2} {\mathrm e}^{x}+y^{\prime } x = 0 \]

[_linear]

0.209

6193

\[ {}1+y^{2} = \left (x^{2}+x \right ) y^{\prime } \]

[_separable]

1.964

6194

\[ {}2 y-x^{3}+y^{\prime } x = 0 \]

[_linear]

0.184

6195

\[ {}y+\left (-x +y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

0.389

6196

\[ {}3 y^{3}-y x -\left (x^{2}+6 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

0.494

6197

\[ {}3 x^{2} y^{2}+4 \left (x^{3} y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.223

6198

\[ {}y \left (x +y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

0.229

6199

\[ {}2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.412

6200

\[ {}y \left (y^{2}-2 x^{2}\right )+x \left (2 y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.678