| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
{y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.683 |
|
| \begin{align*}
{y^{\prime }}^{2}-4 \left (x +1\right ) y^{\prime }+4 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.224 |
|
| \begin{align*}
{y^{\prime }}^{2}+a x y^{\prime }&=b c \,x^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.577 |
|
| \begin{align*}
{y^{\prime }}^{2}-a x y^{\prime }+a y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.264 |
|
| \begin{align*}
{y^{\prime }}^{2}+a x y^{\prime }+b \,x^{2}+c y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✗ |
✓ |
✗ |
4.424 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (b x +a \right ) y^{\prime }+c&=b y \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.325 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 x^{2} y^{\prime }+2 y^{\prime } x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.217 |
|
| \begin{align*}
{y^{\prime }}^{2}+a \,x^{3} y^{\prime }-2 a \,x^{2} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.335 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 a \,x^{3} y^{\prime }+4 a \,x^{2} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.309 |
|
| \begin{align*}
{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.505 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 y^{\prime } \cosh \left (x \right )+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.172 |
|
| \begin{align*}
y y^{\prime }+{y^{\prime }}^{2}&=x \left (x +y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.258 |
|
| \begin{align*}
{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.696 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.492 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 y y^{\prime }-2 x&=0 \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
67.690 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (1+2 y\right ) y^{\prime }+y \left (-1+y\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.618 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 \left (x -y\right ) y^{\prime }-4 y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
{y^{\prime }}^{2}-\left (4 y+1\right ) y^{\prime }+\left (4 y+1\right ) y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
1.761 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 \left (1-3 y\right ) y^{\prime }-\left (4-9 y\right ) y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
5.263 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (a +6 y\right ) y^{\prime }+y \left (3 a +b +9 y\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
20.487 |
|
| \begin{align*}
{y^{\prime }}^{2}+a y y^{\prime }-a x&=0 \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.926 |
|
| \begin{align*}
{y^{\prime }}^{2}-a y y^{\prime }-a x&=0 \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
70.168 |
|
| \begin{align*}
{y^{\prime }}^{2}+\left (a x +b y\right ) y^{\prime }+a b x y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.705 |
|
| \begin{align*}
{y^{\prime }}^{2}-y y^{\prime } x +y^{2} \ln \left (a y\right )&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
✓ |
✓ |
✗ |
1.517 |
|
| \begin{align*}
{y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+2 y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
{y^{\prime }}^{2}-\left (4+y^{2}\right ) y^{\prime }+4+y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.320 |
|
| \begin{align*}
{y^{\prime }}^{2}-\left (x -y\right ) y y^{\prime }-x y^{3}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
{y^{\prime }}^{2}+y^{\prime } y^{2} x +y^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.985 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 x^{3} y^{2} y^{\prime }-4 x^{2} y^{3}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
18.371 |
|
| \begin{align*}
{y^{\prime }}^{2}-x y \left (x^{2}+y^{2}\right ) y^{\prime }+y^{4} x^{4}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.974 |
|
| \begin{align*}
{y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
1.630 |
|
| \begin{align*}
{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.674 |
|
| \begin{align*}
{y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
118.855 |
|
| \begin{align*}
{y^{\prime }}^{2}&={\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right ) \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.089 |
|
| \begin{align*}
2 {y^{\prime }}^{2}+y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.436 |
|
| \begin{align*}
2 {y^{\prime }}^{2}-\left (1-x \right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
2 {y^{\prime }}^{2}-2 x^{2} y^{\prime }+3 y x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
0.894 |
|
| \begin{align*}
2 {y^{\prime }}^{2}+2 \left (6 y-1\right ) y^{\prime }+3 y \left (6 y-1\right )&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
8.811 |
|
| \begin{align*}
3 {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.531 |
|
| \begin{align*}
3 {y^{\prime }}^{2}+4 y^{\prime } x +x^{2}-y&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.818 |
|
| \begin{align*}
4 {y^{\prime }}^{2}&=9 x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| \begin{align*}
4 {y^{\prime }}^{2}+2 x \,{\mathrm e}^{-2 y} y^{\prime }-{\mathrm e}^{-2 y}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.721 |
|
| \begin{align*}
4 {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x -2 y} y^{\prime }-{\mathrm e}^{2 x -2 y}&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.264 |
|
| \begin{align*}
5 {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.984 |
|
| \begin{align*}
5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.920 |
|
| \begin{align*}
9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.715 |
|
| \begin{align*}
x {y^{\prime }}^{2}&=a \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.815 |
|
| \begin{align*}
x {y^{\prime }}^{2}&=\left (a -x \right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.508 |
|
| \begin{align*}
x {y^{\prime }}^{2}&=y \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.969 |
|
| \begin{align*}
x {y^{\prime }}^{2}+x -2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.605 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime }&=y \\
\end{align*} |
[_rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.927 |
|
| \begin{align*}
x {y^{\prime }}^{2}+2 y^{\prime }-y&=0 \\
\end{align*} |
[_rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.346 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y^{\prime }-y&=0 \\
\end{align*} |
[_rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.052 |
|
| \begin{align*}
x {y^{\prime }}^{2}+4 y^{\prime }-2 y&=0 \\
\end{align*} |
[_rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.399 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.961 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.252 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y y^{\prime }+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
28.450 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y y^{\prime }+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.770 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y y^{\prime }+a x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.605 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y y^{\prime }-x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
11.412 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y y^{\prime }+x^{3}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
✓ |
✓ |
✗ |
10.095 |
|
| \begin{align*}
x {y^{\prime }}^{2}-y y^{\prime }+a y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.294 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y y^{\prime }-y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.442 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (-y+a \right ) y^{\prime }+b&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.279 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.359 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (a +x -y\right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.387 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (3 x -y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
9.973 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (a +b x -y\right ) y^{\prime }-b y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.405 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y y^{\prime }+a&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.261 |
|
| \begin{align*}
x {y^{\prime }}^{2}+2 y y^{\prime }-x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
38.238 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y y^{\prime }+a x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✗ |
✓ |
1.225 |
|
| \begin{align*}
x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.207 |
|
| \begin{align*}
x {y^{\prime }}^{2}-3 y y^{\prime }+9 x^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.165 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| \begin{align*}
x {y^{\prime }}^{2}-a y y^{\prime }+b&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
76.858 |
|
| \begin{align*}
x {y^{\prime }}^{2}+a y y^{\prime }+b x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.612 |
|
| \begin{align*}
x {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.196 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.151 |
|
| \begin{align*}
x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-y x&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.242 |
|
| \begin{align*}
\left (x +1\right ) {y^{\prime }}^{2}&=y \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
2.389 |
|
| \begin{align*}
\left (x +1\right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.382 |
|
| \begin{align*}
\left (a -x \right ) {y^{\prime }}^{2}+y y^{\prime }-b&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.388 |
|
| \begin{align*}
2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y&=0 \\
\end{align*} |
[_rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
2.921 |
|
| \begin{align*}
3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.317 |
|
| \begin{align*}
\left (1+3 x \right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
0.392 |
|
| \begin{align*}
\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y&=0 \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.180 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}&=\left (a -3 x \right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.608 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.117 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}-3 y y^{\prime }+3&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
1.187 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+4 y y^{\prime }&=1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
6.406 |
|
| \begin{align*}
4 x {y^{\prime }}^{2}+4 y y^{\prime }-y^{4}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✗ |
1.455 |
|
| \begin{align*}
4 \left (-x +2\right ) {y^{\prime }}^{2}+1&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6}&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘]] |
✓ |
✓ |
✓ |
✓ |
0.974 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}&=a^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.314 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.171 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+x^{2}-y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
4.630 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}&=\left (x -y\right )^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+y^{2}-y^{4}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.747 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}-y^{\prime } x +y \left (1-y\right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.174 |
|
| \begin{align*}
x^{2} {y^{\prime }}^{2}+2 a x y^{\prime }+a^{2}+x^{2}-2 a y&=0 \\
\end{align*} |
[_rational] |
✓ |
✓ |
✓ |
✗ |
1.859 |
|