2.2.62 Problems 6101 to 6200

Table 2.125: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6101

\[ {}\left (1+y\right ) y^{\prime } = y \]
i.c.

[_quadrature]

1.595

6102

\[ {}y^{\prime }-x y = x \]
i.c.

[_separable]

1.789

6103

\[ {}2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}} \]
i.c.

[_quadrature]

1.750

6104

\[ {}\left (x +x y\right ) y^{\prime }+y = 0 \]
i.c.

[_separable]

2.184

6105

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

0.265

6106

\[ {}x^{2} y^{\prime }+3 x y = 1 \]

[_linear]

0.245

6107

\[ {}y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0 \]

[_linear]

0.272

6108

\[ {}2 y^{\prime } x +y = 2 x^{{5}/{2}} \]

[_linear]

0.224

6109

\[ {}\cos \left (x \right ) y^{\prime }+y = \cos \left (x \right )^{2} \]

[_linear]

0.403

6110

\[ {}y^{\prime }+\frac {y}{\sqrt {x^{2}+1}} = \frac {1}{x +\sqrt {x^{2}+1}} \]

[_linear]

0.286

6111

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime }+2 y \,{\mathrm e}^{x} = \left (1+{\mathrm e}^{x}\right ) {\mathrm e}^{x} \]

[_linear]

0.297

6112

\[ {}x \ln \left (x \right ) y^{\prime }+y = \ln \left (x \right ) \]

[_linear]

0.131

6113

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y+2 x \sqrt {-x^{2}+1} \]

[_linear]

0.259

6114

\[ {}y^{\prime }+y \tanh \left (x \right ) = 2 \,{\mathrm e}^{x} \]

[_linear]

0.321

6115

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (2 x \right ) \]

[_linear]

0.332

6116

\[ {}x^{\prime } = \cos \left (y \right )-x \tan \left (y \right ) \]

[_linear]

0.300

6117

\[ {}x^{\prime }+x-{\mathrm e}^{y} = 0 \]

[[_linear, ‘class A‘]]

0.258

6118

\[ {}x^{\prime } = \frac {3 y^{{2}/{3}}-x}{3 y} \]

[_linear]

0.215

6119

\[ {}y^{\prime }+y = x y^{{2}/{3}} \]

[_Bernoulli]

1.280

6120

\[ {}y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

8.544

6121

\[ {}3 x y^{2} y^{\prime }+3 y^{3} = 1 \]

[_separable]

2.981

6122

\[ {}2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime } = 0 \]

[_exact]

1.753

6123

\[ {}\left (x -y\right ) y^{\prime }+y+x +1 = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.541

6124

\[ {}\cos \left (x \right ) \cos \left (y\right )+\sin \left (x \right )^{2}-\left (\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right )^{2}\right ) y^{\prime } = 0 \]

unknown

42.423

6125

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.396

6126

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.375

6127

\[ {}x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.539

6128

\[ {}y^{2}-x y+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.440

6129

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.552

6130

\[ {}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.140

6131

\[ {}\left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0 \]

[_linear]

2.747

6132

\[ {}y^{\prime } = x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.904

6133

\[ {}y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.793

6134

\[ {}y^{\prime } = {\mathrm e}^{-x} y^{2}+y-{\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Riccati]

1.456

6135

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

1.108

6136

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.217

6137

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

2.030

6138

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1.536

6139

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

2.292

6140

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

2.346

6141

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

1.105

6142

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.998

6143

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

2.115

6144

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.123

6145

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

[[_2nd_order, _missing_x]]

0.716

6146

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

[[_2nd_order, _missing_x]]

0.727

6147

\[ {}y^{\prime \prime \prime }+y = 0 \]

[[_3rd_order, _missing_x]]

0.085

6148

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.077

6149

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0 \]

[[_3rd_order, _missing_x]]

0.139

6150

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.095

6151

\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \]

[[_2nd_order, _missing_x]]

2.137

6152

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 16 \]

[[_2nd_order, _missing_x]]

1.387

6153

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.311

6154

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 24 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.330

6155

\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

2.144

6156

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 12 \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

1.449

6157

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.362

6158

\[ {}y^{\prime \prime }-16 y = 40 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.408

6159

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

1.390

6160

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.408

6161

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

72.320

6162

\[ {}y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

77.015

6163

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.672

6164

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

73.584

6165

\[ {}5 y^{\prime \prime }+12 y^{\prime }+20 y = 120 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

49.080

6166

\[ {}y^{\prime \prime }+9 y = 30 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.004

6167

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.159

6168

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = 60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

72.625

6169

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

10.395

6170

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = 30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

50.924

6171

\[ {}5 y^{\prime \prime }+6 y^{\prime }+2 y = x^{2}+6 x \]

[[_2nd_order, _with_linear_symmetries]]

40.347

6172

\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

2.239

6173

\[ {}y^{\prime \prime }+y = 2 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.150

6174

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 12 x \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.439

6175

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 16 x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.469

6176

\[ {}y^{\prime \prime }+y = 8 x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.667

6177

\[ {}y^{\prime \prime }+y = x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.652

6178

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x}+6 x -5 \]

[[_2nd_order, _with_linear_symmetries]]

1.437

6179

\[ {}y^{\prime \prime }-y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.845

6180

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )+4 x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.510

6181

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.620

6182

\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

2.819

6183

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.843

6184

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.739

6185

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.687

6186

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.202

6187

\[ {}y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

0.864

6188

\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.348

6189

\[ {}x y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.718

6190

\[ {}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right ) \]

[[_2nd_order, _missing_x]]

2.763

6191

\[ {}k = \frac {y^{\prime \prime }}{\left (1+y^{\prime }\right )^{{3}/{2}}} \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

3.757

6192

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = 0 \]

[[_Emden, _Fowler]]

1.159

6193

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.041

6194

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

1.154

6195

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

2.690

6196

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 8 x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

1.945

6197

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x -\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.314

6198

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1.879

6199

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 6 x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.855

6200

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.526