2.2.62 Problems 6101 to 6200

Table 2.125: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6101

(y+1)y=y
i.c.

[_quadrature]

2.299

6102

yxy=x
i.c.

[_separable]

1.917

6103

2y=3(y2)1/3
i.c.

[_quadrature]

2.159

6104

(x+xy)y+y=0
i.c.

[_separable]

2.239

6105

y+y=ex

[[_linear, ‘class A‘]]

0.248

6106

x2y+3xy=1

[_linear]

0.224

6107

y+2xyxex2=0

[_linear]

0.263

6108

2xy+y=2x5/2

[_linear]

0.205

6109

cos(x)y+y=cos(x)2

[_linear]

0.489

6110

y+yx2+1=1x+x2+1

[_linear]

0.251

6111

(ex+1)y+2yex=(ex+1)ex

[_linear]

0.277

6112

xln(x)y+y=ln(x)

[_linear]

0.129

6113

(x2+1)y=xy+2xx2+1

[_linear]

0.236

6114

y+ytanh(x)=2ex

[_linear]

0.314

6115

y+ycos(x)=sin(2x)

[_linear]

0.330

6116

x=cos(y)xtan(y)

[_linear]

0.285

6117

x+xey=0

[[_linear, ‘class A‘]]

0.247

6118

x=3y2/3x3y

[_linear]

0.210

6119

y+y=xy2/3

[_Bernoulli]

1.273

6120

y+yx=2x3/2y

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

11.735

6121

3xy2y+3y3=1

[_separable]

3.418

6122

2xe3y+ex+(3x2e3yy2)y=0

[_exact]

1.849

6123

(xy)y+y+x+1=0

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.432

6124

cos(x)cos(y)+sin(x)2(sin(x)sin(y)+cos(y)2)y=0

unknown

43.244

6125

x2y+y2xy=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.464

6126

yy=x+x2+y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.005

6127

xy+(y2x2)y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

16.866

6128

y2xy+(xy+x2)y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

86.082

6129

y=cos(x+y)

[[_homogeneous, ‘class C‘], _dAlembert]

2.284

6130

y=yxtan(yx)

[[_homogeneous, ‘class A‘], _dAlembert]

3.918

6131

(1+x)y+y1x2+2x3=0

[_linear]

2.978

6132

y=xy22yx1x3

[[_homogeneous, ‘class G‘], _rational, _Riccati]

1.960

6133

y=2y2x+yx2x

[[_homogeneous, ‘class D‘], _rational, _Riccati]

2.003

6134

y=exy2+yex

[[_1st_order, _with_linear_symmetries], _Riccati]

1.589

6135

y+y2y=0

[[_2nd_order, _missing_x]]

0.857

6136

y4y+4y=0

[[_2nd_order, _missing_x]]

0.954

6137

y+9y=0

[[_2nd_order, _missing_x]]

1.923

6138

y+2y+2y=0

[[_2nd_order, _missing_x]]

1.951

6139

y2y+6y=0

[[_2nd_order, _missing_x]]

2.014

6140

y+16y=0

[[_2nd_order, _missing_x]]

2.175

6141

y5y+6y=0

[[_2nd_order, _missing_x]]

0.842

6142

y+5y=0

[[_2nd_order, _missing_x]]

1.878

6143

y4y+13y=0

[[_2nd_order, _missing_x]]

2.656

6144

2y+yy=0

[[_2nd_order, _missing_x]]

0.858

6145

y+(1+2i)y+(1+i)y=0

[[_2nd_order, _missing_x]]

0.445

6146

y+(1+2i)y+(1+i)y=0

[[_2nd_order, _missing_x]]

0.444

6147

y+y=0

[[_3rd_order, _missing_x]]

0.059

6148

y+y6y=0

[[_3rd_order, _missing_x]]

0.049

6149

y+3y9y5y=0

[[_3rd_order, _missing_x]]

0.111

6150

y+4y=0

[[_high_order, _missing_x]]

0.059

6151

y4y=10

[[_2nd_order, _missing_x]]

1.966

6152

y4y+4y=16

[[_2nd_order, _missing_x]]

1.096

6153

y+y2y=e2x

[[_2nd_order, _with_linear_symmetries]]

1.105

6154

y2y3y=24e3x

[[_2nd_order, _with_linear_symmetries]]

1.105

6155

y+y=2ex

[[_2nd_order, _with_linear_symmetries]]

1.836

6156

y+6y+9y=12ex

[[_2nd_order, _with_linear_symmetries]]

1.197

6157

yy2y=3e2x

[[_2nd_order, _with_linear_symmetries]]

1.156

6158

y16y=40e4x

[[_2nd_order, _with_linear_symmetries]]

1.191

6159

y+2y+y=2ex

[[_2nd_order, _with_linear_symmetries]]

1.100

6160

y6y+9y=6e3x

[[_2nd_order, _with_linear_symmetries]]

1.178

6161

y+2y+10y=100cos(4x)

[[_2nd_order, _linear, _nonhomogeneous]]

43.473

6162

y+4y+12y=80sin(2x)

[[_2nd_order, _linear, _nonhomogeneous]]

76.241

6163

y2y+y=2cos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

1.483

6164

y+8y+25y=120sin(5x)

[[_2nd_order, _linear, _nonhomogeneous]]

49.121

6165

5y+12y+20y=120sin(2x)

[[_2nd_order, _linear, _nonhomogeneous]]

47.579

6166

y+9y=30sin(3x)

[[_2nd_order, _linear, _nonhomogeneous]]

3.635

6167

y+16y=16cos(4x)

[[_2nd_order, _linear, _nonhomogeneous]]

3.646

6168

y+2y+17y=60e4xsin(5x)

[[_2nd_order, _linear, _nonhomogeneous]]

50.113

6169

4y+4y+5y=40e3x2sin(2x)

[[_2nd_order, _linear, _nonhomogeneous]]

15.592

6170

y+4y+8y=30ex2cos(5x2)

[[_2nd_order, _linear, _nonhomogeneous]]

38.030

6171

5y+6y+2y=x2+6x

[[_2nd_order, _with_linear_symmetries]]

39.657

6172

2y+y=2x

[[_2nd_order, _missing_y]]

2.179

6173

y+y=2xex

[[_2nd_order, _linear, _nonhomogeneous]]

1.856

6174

y6y+9y=12xe3x

[[_2nd_order, _linear, _nonhomogeneous]]

1.233

6175

y2y3y=16x2ex

[[_2nd_order, _linear, _nonhomogeneous]]

1.218

6176

y+y=8xsin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

3.507

6177

y+y=x31+2cos(x)+(24x)ex

[[_2nd_order, _linear, _nonhomogeneous]]

5.265

6178

y5y+6y=2ex+6x5

[[_2nd_order, _with_linear_symmetries]]

1.213

6179

yy=sinh(x)

[[_2nd_order, _linear, _nonhomogeneous]]

2.616

6180

y+y=2sin(x)+4xcos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

3.381

6181

y+2y+y=4ex+(1x)(e2x1)

[[_2nd_order, _linear, _nonhomogeneous]]

1.464

6182

y2y=9xex6x2+4e2x

[[_2nd_order, _missing_y]]

2.553

6183

y+yy=0
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.964

6184

y+yy=0
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.670

6185

y+yy=0
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.514

6186

y+yy=0
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.226

6187

y+2xy=0

[[_2nd_order, _missing_y]]

0.727

6188

2yy=y2

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.371

6189

xy=y+y3

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.418

6190

y2=k2(1+y2)

[[_2nd_order, _missing_x]]

4.868

6191

k=y(y+1)3/2

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

2.670

6192

x2y+3xy3y=0

[[_Emden, _Fowler]]

0.896

6193

x2y+xy4y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.837

6194

x2y+7xy+9y=0

[[_Emden, _Fowler]]

0.901

6195

x2yxy+6y=0

[[_Emden, _Fowler]]

2.405

6196

x2y+xy16y=8x4

[[_2nd_order, _with_linear_symmetries]]

1.794

6197

x2y+xyy=x1x

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.362

6198

x2y5xy+9y=2x3

[[_2nd_order, _with_linear_symmetries]]

1.610

6199

x2y3xy+4y=6x2ln(x)

[[_2nd_order, _linear, _nonhomogeneous]]

1.614

6200

x2y+y=3x2

[[_2nd_order, _with_linear_symmetries]]

1.141