2.2.63 Problems 6201 to 6300

Table 2.127: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6201

\[ {}-y+y^{\prime } x = 0 \]

[_separable]

0.162

6202

\[ {}y^{\prime }+y = 2+2 x \]

[[_linear, ‘class A‘]]

0.993

6203

\[ {}y^{\prime }-y = y x \]

[_separable]

1.135

6204

\[ {}-3 y-\left (x -2\right ) {\mathrm e}^{x}+y^{\prime } x = 0 \]

[_linear]

2.395

6205

\[ {}i^{\prime }-6 i = 10 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.192

6206

\[ {}y^{\prime }+y = y^{2} {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.081

6207

\[ {}y+\left (y x +x -3 y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1.020

6208

\[ {}\left (2 s-{\mathrm e}^{2 t}\right ) s^{\prime } = 2 s \,{\mathrm e}^{2 t}-2 \cos \left (2 t \right ) \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

10.570

6209

\[ {}y^{\prime } x +y-x^{3} y^{6} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.119

6210

\[ {}r^{\prime }+2 r \cos \left (\theta \right )+\sin \left (2 \theta \right ) = 0 \]

[_linear]

1.576

6211

\[ {}y \left (1+y^{2}\right ) = 2 \left (1-2 x y^{2}\right ) y^{\prime } \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.543

6212

\[ {}y y^{\prime }-x y^{2}+x = 0 \]

[_separable]

1.590

6213

\[ {}\left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y = 0 \]

[‘y=_G(x,y’)‘]

1.607

6214

\[ {}2 x^{\prime }-\frac {x}{y}+x^{3} \cos \left (y \right ) = 0 \]

[_Bernoulli]

7.676

6215

\[ {}y^{\prime } x = y \left (1-x \tan \left (x \right )\right )+x^{2} \cos \left (x \right ) \]

[_linear]

26.710

6216

\[ {}2+y^{2}-\left (y x +2 y+y^{3}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6.147

6217

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5.622

6218

\[ {}2 x y^{5}-y+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.587

6219

\[ {}1+\sin \left (y\right ) = \left (2 y \cos \left (y\right )-x \left (\sec \left (y\right )+\tan \left (y\right )\right )\right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

70.222

6220

\[ {}y^{\prime } x = 2 y+x^{3} {\mathrm e}^{x} \]
i.c.

[_linear]

1.506

6221

\[ {}L i^{\prime }+R i = E \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.575

6222

\[ {}x^{2} \cos \left (y\right ) y^{\prime } = 2 x \sin \left (y\right )-1 \]

[‘y=_G(x,y’)‘]

2.339

6223

\[ {}4 x^{2} y y^{\prime } = 3 x \left (3 y^{2}+2\right )+2 \left (3 y^{2}+2\right )^{3} \]

[_rational]

1.264

6224

\[ {}x y^{3}-y^{3}-x^{2} {\mathrm e}^{x}+3 x y^{2} y^{\prime } = 0 \]

[_Bernoulli]

2.240

6225

\[ {}y^{\prime }+x \left (x +y\right ) = x^{3} \left (x +y\right )^{3}-1 \]

[_Abel]

1.769

6226

\[ {}y+{\mathrm e}^{y}-{\mathrm e}^{-x}+\left (1+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

1.799

6227

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

2.801

6228

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (-1+y\right ) = 0 \]

[_quadrature]

1.626

6229

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.493

6230

\[ {}3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.139

6231

\[ {}8 y {y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.684

6232

\[ {}y^{2} {y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.734

6233

\[ {}{y^{\prime }}^{2}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.303

6234

\[ {}16 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.577

6235

\[ {}x {y^{\prime }}^{5}-y {y^{\prime }}^{4}+\left (x^{2}+1\right ) {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+\left (x +y^{2}\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.702

6236

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.190

6237

\[ {}y = 2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

202.584

6238

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.426

6239

\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.469

6240

\[ {}y = 2 y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \]

[_quadrature]

2.796

6241

\[ {}y {y^{\prime }}^{2}-y^{\prime } x +3 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.398

6242

\[ {}y = y^{\prime } x -2 {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.296

6243

\[ {}y^{2} {y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.705

6244

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.455

6245

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.628

6246

\[ {}\left (3 y-1\right )^{2} {y^{\prime }}^{2} = 4 y \]

[_quadrature]

0.400

6247

\[ {}y = -y^{\prime } x +x^{4} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

1.997

6248

\[ {}2 y = {y^{\prime }}^{2}+4 y^{\prime } x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.341

6249

\[ {}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

[_quadrature]

0.514

6250

\[ {}{y^{\prime }}^{3}-4 x^{4} y^{\prime }+8 x^{3} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

146.084

6251

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2} = \left (x +y y^{\prime }\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.345

6252

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

0.765

6253

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

0.066

6254

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.022

6255

\[ {}y^{\prime \prime }+9 y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.496

6256

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.040

6257

\[ {}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = 3 x^{4} \]

[[_3rd_order, _with_linear_symmetries]]

0.238

6258

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.233

6259

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.350

6260

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.237

6261

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.504

6262

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

0.757

6263

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.062

6264

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.755

6265

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime } = 0 \]

[[_high_order, _missing_x]]

0.067

6266

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

1.652

6267

\[ {}y^{\prime \prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

1.801

6268

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+9 y^{\prime }-9 y = 0 \]

[[_3rd_order, _missing_x]]

0.066

6269

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

[[_high_order, _missing_x]]

0.063

6270

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.086

6271

\[ {}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.086

6272

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 1 \]

[[_2nd_order, _missing_x]]

0.917

6273

\[ {}y^{\prime \prime }-4 y^{\prime } = 5 \]

[[_2nd_order, _missing_x]]

1.421

6274

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime } = 5 \]

[[_3rd_order, _missing_x]]

0.099

6275

\[ {}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 5 \]

[[_high_order, _missing_x]]

0.107

6276

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = x \]

[[_3rd_order, _missing_y]]

0.102

6277

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.952

6278

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

1.046

6279

\[ {}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.033

6280

\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.809

6281

\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.070

6282

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.159

6283

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.876

6284

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.137

6285

\[ {}y^{\prime \prime }+4 y = 4 \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.569

6286

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = \frac {1}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.371

6287

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.256

6288

\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.095

6289

\[ {}y^{\prime \prime }+2 y = 2+{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3.165

6290

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.635

6291

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x^{2}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14.995

6292

\[ {}y^{\prime \prime }-9 y = x +{\mathrm e}^{2 x}-\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.782

6293

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}+4 x +8 \]

[[_3rd_order, _missing_y]]

0.113

6294

\[ {}y^{\prime \prime }+y = -2 \sin \left (x \right )+4 x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.037

6295

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.173

6296

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

37.485

6297

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.034

6298

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x}+x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.080

6299

\[ {}y^{\prime \prime \prime \prime }-y = \sin \left (2 x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.135

6300

\[ {}y^{\prime \prime \prime }+y = \cos \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.132