2.2.63 Problems 6201 to 6300

Table 2.127: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

6201

x2y+yx+y=2x

[[_2nd_order, _with_linear_symmetries]]

6202

x2(2x)y+2yx2y=0

[[_2nd_order, _with_linear_symmetries]]

6203

(x2+1)y2yx+2y=0

[[_2nd_order, _with_linear_symmetries]]

6204

xy2(x+1)y+(x+2)y=0

[[_2nd_order, _with_linear_symmetries]]

6205

3xy2(3x1)y+(3x2)y=0

[[_2nd_order, _with_linear_symmetries]]

6206

x2y+(x+1)yy=0

[[_2nd_order, _exact, _linear, _homogeneous]]

6207

x(x+1)y(x1)y+y=0

[[_2nd_order, _with_linear_symmetries]]

6208

x2yxy=1x

[_linear]

6209

xln(y)yyln(x)=0

[_separable]

6210

y+2y+2y=0

[[_3rd_order, _missing_x]]

6211

r6r+9r=0

[[_2nd_order, _missing_x]]

6212

2xysin(2x)=(sin(x)22y)y

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

6213

y+2y+2y=10ex+6excos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

6214

3x3y2yx2y3=1

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6215

x2yyx+y=x

[[_2nd_order, _with_linear_symmetries]]

6216

y2yy2e3x=0

[[_1st_order, _with_linear_symmetries], _Bernoulli]

6217

u(1v)+v2(1u)u=0

[_separable]

6218

y+2xyx=0

[_linear]

6219

xy+y=4x

[[_2nd_order, _missing_y]]

6220

y+4y+5y=26e3x

[[_2nd_order, _with_linear_symmetries]]

6221

y+4y+5y=2e2xcos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

6222

y4y+4y=6e2x

[[_2nd_order, _with_linear_symmetries]]

6223

y5y+6y=e2x

[[_2nd_order, _with_linear_symmetries]]

6224

(2x+y)yx+2y=0

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6225

(xcos(y)esin(y))y+1=0

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6226

sin(x)2y+sin(x)2+(x+y)sin(2x)=0

[_linear]

6227

y2y+5y=5x+4ex(1+sin(2x))

[[_2nd_order, _linear, _nonhomogeneous]]

6228

y+xy=xy

[_separable]

6229

y2y+13y18y+36y=0

[[_high_order, _missing_x]]

6230

sin(θ)cos(θ)rsin(θ)2=rcos(θ)2

[_linear]

6231

x(yy+y2)=yy

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6232

3x2y+x3y=0
i.c.

[_separable]

6233

yxy=x2
i.c.

[_linear]

6234

y+y6y=6
i.c.

[[_2nd_order, _missing_x]]

6235

yy+y2+4=0
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6236

yx=xy+y

[_separable]

6237

yx=xy+y

[_separable]

6238

y=3x2y

[_separable]

6239

y=3x2y

[_separable]

6240

yx=y

[_separable]

6241

yx=y

[_separable]

6242

y=4y

[[_2nd_order, _missing_x]]

6243

y=4y

[[_2nd_order, _missing_x]]

6244

y=y

[[_2nd_order, _missing_x]]

6245

y=y

[[_2nd_order, _missing_x]]

6246

y2y+y=0

[[_2nd_order, _missing_x]]

6247

y2y+y=0

[[_2nd_order, _missing_x]]

6248

x2y3yx+3y=0

[[_Emden, _Fowler]]

6249

x2y3yx+3y=0

[[_Emden, _Fowler]]

6250

(x2+2x)y2(x+1)y+2y=0

[[_2nd_order, _with_linear_symmetries]]

6251

(x2+2x)y2(x+1)y+2y=0

[[_2nd_order, _with_linear_symmetries]]

6252

(x2+1)y2yx+2y=0

[[_2nd_order, _with_linear_symmetries]]

6253

(x2+1)y2yx+2y=0

[[_2nd_order, _with_linear_symmetries]]

6254

y4yx+(4x22)y=0

[[_2nd_order, _with_linear_symmetries]]

6255

y4yx+(4x22)y=0

[[_2nd_order, _with_linear_symmetries]]

6256

ysin(x+y)=0

[[_homogeneous, ‘class C‘], _dAlembert]

6257

y=4y23y+1

[_quadrature]

6258

s=tln(s2t)+8t2

[‘y=_G(x,y’)‘]

6259

y=yex+yx2+2

[_separable]

6260

(xy2+3y2)y2x=0

[_separable]

6261

s2+s=s+1st

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

6262

yx=1y3

[_separable]

6263

x=3xt2

[_separable]

6264

x=tet2xx

[_separable]

6265

y=xy2x+1

[_separable]

6266

xv=14v23v

[_separable]

6267

y=sec(y)2x2+1

[_separable]

6268

y=3x2(1+y2)3/2

[_separable]

6269

xx3=x

[_quadrature]

6270

x+xy2+ex2yy=0

[_separable]

6271

yy+yecos(x)sin(x)=0

[_separable]

6272

y=(1+y2)tan(x)
i.c.

[_separable]

6273

y=x3(1y)
i.c.

[_separable]

6274

y2=1+ycos(x)
i.c.

[_separable]

6275

x2y=4x2x2(x+1)(1+y)
i.c.

[_separable]

6276

yθ=ysin(θ)y2+1
i.c.

[_separable]

6277

x2+2yy=0
i.c.

[_separable]

6278

y=2tcos(y)2
i.c.

[_separable]

6279

y=8x3e2y
i.c.

[_separable]

6280

y=x2(1+y)
i.c.

[_separable]

6281

y+(x+1)y=0
i.c.

[_separable]

6282

y=ex2
i.c.

[_quadrature]

6283

y=ex2y2
i.c.

[_separable]

6284

y=1+sin(x)(1+y2)
i.c.

[_separable]

6285

y=2y2ty
i.c.

[_separable]

6286

y=y1/3

[_quadrature]

6287

y=y1/3
i.c.

[_quadrature]

6288

y=(x3)(1+y)2/3

[_separable]

6289

y=xy3

[_separable]

6290

y=xy3
i.c.

[_separable]

6291

y=xy3
i.c.

[_separable]

6292

y=xy3
i.c.

[_separable]

6293

y=y23y+2
i.c.

[_quadrature]

6294

x2y+sin(x)y=0

[_linear]

6295

x+tx=ex

[‘y=_G(x,y’)‘]

6296

(t2+1)y=tyy

[_separable]

6297

3t=ety+ln(t)y

[_linear]

6298

xx+xt2=sin(t)

[[_Abel, ‘2nd type‘, ‘class A‘]]

6299

3r=rθ3

[[_linear, ‘class A‘]]

6300

yye3x=0

[[_linear, ‘class A‘]]