2.2.56 Problems 5501 to 5600

Table 2.125: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

5501

\begin{align*} x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -x +y \left (1+y\right )&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

17.090

5502

\begin{align*} x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -x^{4}+y^{2} \left (-x^{2}+1\right )&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

12.217

5503

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+1+y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.810

5504

\begin{align*} x^{2} {y^{\prime }}^{2}-\left (a +2 y x \right ) y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

1.565

5505

\begin{align*} x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.558

5506

\begin{align*} x^{2} {y^{\prime }}^{2}+2 x \left (2 x +y\right ) y^{\prime }-4 a +y^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.426

5507

\begin{align*} x^{2} {y^{\prime }}^{2}+x \left (x^{3}-2 y\right ) y^{\prime }-\left (2 x^{3}-y\right ) y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

1.474

5508

\begin{align*} x^{2} {y^{\prime }}^{2}+3 y y^{\prime } x +2 y^{2}&=0 \\ \end{align*}

[_separable]

0.163

5509

\begin{align*} x^{2} {y^{\prime }}^{2}-3 y y^{\prime } x +x^{3}+2 y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.751

5510

\begin{align*} x^{2} {y^{\prime }}^{2}+4 y y^{\prime } x -5 y^{2}&=0 \\ \end{align*}

[_separable]

0.191

5511

\begin{align*} x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 \left (y+2\right ) y&=0 \\ \end{align*}

[_separable]

0.438

5512

\begin{align*} x^{2} {y^{\prime }}^{2}-5 y y^{\prime } x +6 y^{2}&=0 \\ \end{align*}

[_separable]

0.186

5513

\begin{align*} x^{2} {y^{\prime }}^{2}+x \left (x^{2}+y x -2 y\right ) y^{\prime }+\left (1-x \right ) \left (x^{2}-y\right ) y&=0 \\ \end{align*}

[_rational]

155.714

5514

\begin{align*} x^{2} {y^{\prime }}^{2}+\left (2 x +y\right ) y y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

168.349

5515

\begin{align*} x^{2} {y^{\prime }}^{2}+\left (2 x -y\right ) y y^{\prime }+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

200.296

5516

\begin{align*} x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3}&=0 \\ \end{align*}

[_quadrature]

1.372

5517

\begin{align*} \left (-x^{2}+1\right ) {y^{\prime }}^{2}&=1-y^{2} \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.804

5518

\begin{align*} \left (-x^{2}+1\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +4 x^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

0.454

5519

\begin{align*} \left (a^{2}+x^{2}\right ) {y^{\prime }}^{2}&=b^{2} \\ \end{align*}

[_quadrature]

2.441

5520

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+b^{2}&=0 \\ \end{align*}

[_quadrature]

1.227

5521

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}&=b^{2} \\ \end{align*}

[_quadrature]

2.471

5522

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}&=x^{2} \\ \end{align*}

[_quadrature]

0.410

5523

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +x^{2}&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

0.436

5524

\begin{align*} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x -y^{2}&=0 \\ \end{align*}

[_separable]

0.296

5525

\begin{align*} \left (a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +b +y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.165

5526

\begin{align*} 4 x^{2} {y^{\prime }}^{2}-4 y y^{\prime } x&=8 x^{3}-y^{2} \\ \end{align*}

[_linear]

0.784

5527

\begin{align*} a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+x^{2} a \left (1-a \right )+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.170

5528

\begin{align*} \left (-a^{2}+1\right ) x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -a^{2} x^{2}+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

54.856

5529

\begin{align*} x^{3} {y^{\prime }}^{2}&=a \\ \end{align*}

[_quadrature]

1.805

5530

\begin{align*} x^{3} {y^{\prime }}^{2}+y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

2.035

5531

\begin{align*} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.503

5532

\begin{align*} x \left (-x^{2}+1\right ) {y^{\prime }}^{2}-2 \left (-x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right )&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

52.367

5533

\begin{align*} 4 x \left (a -x \right ) \left (b -x \right ) {y^{\prime }}^{2}&=\left (a b -2 \left (a +b \right ) x +2 x^{2}\right )^{2} \\ \end{align*}

[_quadrature]

1.653

5534

\begin{align*} x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.997

5535

\begin{align*} x^{4} {y^{\prime }}^{2}+2 y y^{\prime } x^{3}-4&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.882

5536

\begin{align*} x^{4} {y^{\prime }}^{2}+y^{\prime } y^{2} x -y^{3}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.855

5537

\begin{align*} x^{2} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+1&=0 \\ \end{align*}

[_quadrature]

2.783

5538

\begin{align*} 3 x^{4} {y^{\prime }}^{2}-y x -y&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3.333

5539

\begin{align*} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

1.056

5540

\begin{align*} x^{6} {y^{\prime }}^{2}-2 y^{\prime } x -4 y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.760

5541

\begin{align*} x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘]]

0.765

5542

\begin{align*} y {y^{\prime }}^{2}&=a \\ \end{align*}

[_quadrature]

1.281

5543

\begin{align*} y {y^{\prime }}^{2}&=a^{2} x \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

6.134

5544

\begin{align*} y {y^{\prime }}^{2}&={\mathrm e}^{2 x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

24.612

5545

\begin{align*} y {y^{\prime }}^{2}+2 a x y^{\prime }-a y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.365

5546

\begin{align*} y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

75.953

5547

\begin{align*} y {y^{\prime }}^{2}+a x y^{\prime }+b y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.519

5548

\begin{align*} y {y^{\prime }}^{2}-\left (-2 b x +a \right ) y^{\prime }-b y&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

3.558

5549

\begin{align*} y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.603

5550

\begin{align*} y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x&=0 \\ \end{align*}

[_quadrature]

0.677

5551

\begin{align*} y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

69.940

5552

\begin{align*} y {y^{\prime }}^{2}-\left (y x +1\right ) y^{\prime }+x&=0 \\ \end{align*}

[_quadrature]

0.721

5553

\begin{align*} y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x&=0 \\ \end{align*}

[_quadrature]

0.242

5554

\begin{align*} y {y^{\prime }}^{2}+y&=a \\ \end{align*}

[_quadrature]

1.119

5555

\begin{align*} \left (x +y\right ) {y^{\prime }}^{2}+2 y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.740

5556

\begin{align*} \left (2 x -y\right ) {y^{\prime }}^{2}-2 \left (1-x \right ) y^{\prime }+2-y&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

0.859

5557

\begin{align*} 2 y {y^{\prime }}^{2}+\left (5-4 x \right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.940

5558

\begin{align*} 9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

1.918

5559

\begin{align*} \left (1-a y\right ) {y^{\prime }}^{2}&=a y \\ \end{align*}

[_quadrature]

1.549

5560

\begin{align*} \left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

7.066

5561

\begin{align*} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1&=0 \\ \end{align*}

[_quadrature]

0.924

5562

\begin{align*} x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+y x&=0 \\ \end{align*}

[_separable]

0.302

5563

\begin{align*} x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-y x&=0 \\ \end{align*}

[_separable]

0.261

5564

\begin{align*} x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-y x&=0 \\ \end{align*}

[_separable]

0.287

5565

\begin{align*} x y {y^{\prime }}^{2}+\left (a +x^{2}-y^{2}\right ) y^{\prime }-y x&=0 \\ \end{align*}

[_rational]

582.426

5566

\begin{align*} x y {y^{\prime }}^{2}-\left (a -b \,x^{2}+y^{2}\right ) y^{\prime }-b x y&=0 \\ \end{align*}

[_rational]

345.365

5567

\begin{align*} x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 y x&=0 \\ \end{align*}

[_separable]

0.631

5568

\begin{align*} x \left (x -2 y\right ) {y^{\prime }}^{2}-2 y y^{\prime } x -2 y x +y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

177.239

5569

\begin{align*} x \left (x -2 y\right ) {y^{\prime }}^{2}+6 y y^{\prime } x -2 y x +y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

181.404

5570

\begin{align*} y^{2} {y^{\prime }}^{2}&=a^{2} \\ \end{align*}

[_quadrature]

0.648

5571

\begin{align*} y^{2} {y^{\prime }}^{2}-a^{2}+y^{2}&=0 \\ \end{align*}

[_quadrature]

1.025

5572

\begin{align*} y^{2} {y^{\prime }}^{2}-3 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

0.767

5573

\begin{align*} y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

8.882

5574

\begin{align*} y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+4 a^{2}-4 a x +y^{2}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

0.937

5575

\begin{align*} y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x&=0 \\ \end{align*}

[_quadrature]

0.689

5576

\begin{align*} y^{2} {y^{\prime }}^{2}+2 y y^{\prime } x +x^{2}&=0 \\ \end{align*}

[_separable]

0.332

5577

\begin{align*} y^{2} {y^{\prime }}^{2}+2 y y^{\prime } x +a -y^{2}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

0.289

5578

\begin{align*} y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -x^{2}+2 y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.876

5579

\begin{align*} y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +a -x^{2}+2 y^{2}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7.431

5580

\begin{align*} y^{2} {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (-1+a \right ) b +a \,x^{2}+\left (1-a \right ) y^{2}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

12.046

5581

\begin{align*} \left (1-y^{2}\right ) {y^{\prime }}^{2}&=1 \\ \end{align*}

[_quadrature]

2.823

5582

\begin{align*} \left (a^{2}-y^{2}\right ) {y^{\prime }}^{2}&=y^{2} \\ \end{align*}

[_quadrature]

0.425

5583

\begin{align*} \left (a^{2} x^{2}-y^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +x^{2} \left (a^{2}-1\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

2.613

5584

\begin{align*} \left (\left (1-a \right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+x^{2}+\left (1-a \right ) y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

0.734

5585

\begin{align*} \left (\left (-4 a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}-8 a^{2} x y y^{\prime }+x^{2}+\left (-4 a^{2}+1\right ) y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

9.381

5586

\begin{align*} \left (\left (-a^{2}+1\right ) x^{2}+y^{2}\right ) {y^{\prime }}^{2}+2 a^{2} x y y^{\prime }+x^{2}+\left (-a^{2}+1\right ) y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.802

5587

\begin{align*} \left (x +y\right )^{2} {y^{\prime }}^{2}&=y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.132

5588

\begin{align*} \left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-y x -2 y^{2}\right ) y^{\prime }-y \left (x -y\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.549

5589

\begin{align*} \left (a^{2}-\left (x -y\right )^{2}\right ) {y^{\prime }}^{2}+2 a^{2} y^{\prime }+a^{2}-\left (x -y\right )^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

6.598

5590

\begin{align*} 2 y^{2} {y^{\prime }}^{2}+2 y y^{\prime } x -1+x^{2}+y^{2}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

136.802

5591

\begin{align*} 3 y^{2} {y^{\prime }}^{2}-2 y y^{\prime } x -x^{2}+4 y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _dAlembert]

1.931

5592

\begin{align*} 4 y^{2} {y^{\prime }}^{2}+2 \left (1+3 x \right ) x y y^{\prime }+3 x^{3}&=0 \\ \end{align*}

[_separable]

0.789

5593

\begin{align*} \left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 y y^{\prime } x -4 x^{2}+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.784

5594

\begin{align*} 9 y^{2} {y^{\prime }}^{2}-3 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

0.673

5595

\begin{align*} \left (2-3 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\ \end{align*}

[_quadrature]

0.384

5596

\begin{align*} \left (-a^{2}+1\right ) y^{2} {y^{\prime }}^{2}-3 a^{2} x y y^{\prime }-a^{2} x^{2}+y^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.898

5597

\begin{align*} \left (a -b \right ) y^{2} {y^{\prime }}^{2}-2 b x y y^{\prime }-a b -b \,x^{2}+a y^{2}&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

14.729

5598

\begin{align*} a^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) {y^{\prime }}^{2}+2 a \,b^{2} c y^{\prime }+c^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

7.681

5599

\begin{align*} x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+a^{2} x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

2.530

5600

\begin{align*} x y^{2} {y^{\prime }}^{2}+\left (a -x^{3}-y^{3}\right ) y^{\prime }+x^{2} y&=0 \\ \end{align*}

[_rational]

32.490