2.2.64 Problems 6301 to 6400

Table 2.129: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6301

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.951

6302

\[ {}y^{\prime \prime }+5 y = \cos \left (\sqrt {5}\, x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.383

6303

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x}+{\mathrm e}^{-x}+\sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.635

6304

\[ {}y^{\prime \prime }-y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.049

6305

\[ {}y^{\prime \prime }+2 y = x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12.392

6306

\[ {}y^{\prime \prime }-2 y^{\prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.697

6307

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 x}}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.060

6308

\[ {}y^{\prime \prime }-y = x \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.016

6309

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.121

6310

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x +x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.632

6311

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

2.696

6312

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime } = x +\sin \left (\ln \left (x \right )\right ) \]

[[_3rd_order, _missing_y]]

0.364

6313

\[ {}x^{3} y^{\prime \prime \prime }+y^{\prime } x -y = 3 x^{4} \]

[[_3rd_order, _with_linear_symmetries]]

0.244

6314

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.253

6315

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.201

6316

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

0.954

6317

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

1.701

6318

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

1.778

6319

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (x +2\right ) y = \left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.236

6320

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.707

6321

\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y = \left (-x^{2}+6\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.988

6322

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.933

6323

\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = \left (x^{2}-x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.452

6324

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.288

6325

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {x +1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

107.497

6326

\[ {}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.540

6327

\[ {}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = x \]

[[_2nd_order, _with_linear_symmetries]]

3.055

6328

\[ {}x y^{\prime \prime }-3 y^{\prime }+\frac {3 y}{x} = x +2 \]

[[_2nd_order, _with_linear_symmetries]]

1.563

6329

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (3 x +2\right ) {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.383

6330

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (9 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.248

6331

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y x = 4 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.837

6332

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \frac {-x^{2}+1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.851

6333

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.350

6334

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {2}{x^{3}} \]

[[_2nd_order, _missing_y]]

1.314

6335

\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

1.154

6336

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

[[_3rd_order, _missing_y]]

0.101

6337

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.492

6338

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.401

6339

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \cos \left (y\right )+y y^{\prime } \sin \left (y\right )\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

1.115

6340

\[ {}\left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 y^{\prime } x -4 y = 8 \]

[[_3rd_order, _with_linear_symmetries]]

0.049

6341

\[ {}\left (2 x^{3}-1\right ) y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+6 y^{\prime } x = 0 \]

[[_3rd_order, _missing_y]]

0.329

6342

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.335

6343

\[ {}\left (x +2 y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+2 y^{\prime } = 2 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1.581

6344

\[ {}\left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right ) = x \]

[[_3rd_order, _exact, _nonlinear]]

0.054

6345

\[ {}3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x} \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.057

6346

\[ {}y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y y^{\prime } = {\mathrm e}^{2 x} \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

0.056

6347

\[ {}2 \left (1+y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.394

6348

\[ {}\left [\begin {array}{c} x^{\prime }-y^{\prime }+y=-{\mathrm e}^{t} \\ x+y^{\prime }-y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

0.473

6349

\[ {}\left [\begin {array}{c} x^{\prime }+2 x+y^{\prime }+y=t \\ 5 x+y^{\prime }+3 y=t^{2} \end {array}\right ] \]

system_of_ODEs

0.714

6350

\[ {}\left [\begin {array}{c} x^{\prime }+x+2 y^{\prime }+7 y={\mathrm e}^{t}+2 \\ -2 x+y^{\prime }+3 y={\mathrm e}^{t}-1 \end {array}\right ] \]

system_of_ODEs

0.717

6351

\[ {}\left [\begin {array}{c} x^{\prime }-x+y^{\prime }+3 y={\mathrm e}^{-t}-1 \\ x^{\prime }+2 x+y^{\prime }+3 y={\mathrm e}^{2 t}+1 \end {array}\right ] \]

system_of_ODEs

0.194

6352

\[ {}\left [\begin {array}{c} x^{\prime }-x+y^{\prime }+2 y=1+{\mathrm e}^{t} \\ y^{\prime }+2 y+z^{\prime }+z={\mathrm e}^{t}+2 \\ x^{\prime }-x+z^{\prime }+z=3+{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.551

6353

\[ {}\left (1-x \right ) y^{\prime } = x^{2}-y \]

[_linear]

0.470

6354

\[ {}y^{\prime } x = 1-x +2 y \]

[_linear]

0.508

6355

\[ {}y^{\prime } x = 1-x +2 y \]

[_linear]

1.225

6356

\[ {}y^{\prime } = 2 x^{2}+3 y \]

[[_linear, ‘class A‘]]

0.485

6357

\[ {}\left (x +1\right ) y^{\prime } = x^{2}-2 x +y \]

[_linear]

0.466

6358

\[ {}y^{\prime \prime }+y x = 0 \]

[[_Emden, _Fowler]]

0.439

6359

\[ {}y^{\prime \prime }+2 x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.441

6360

\[ {}y^{\prime \prime }-y^{\prime } x +x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.483

6361

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +p \left (p +1\right ) y = 0 \]

[_Gegenbauer]

0.691

6362

\[ {}y^{\prime \prime }+x^{2} y = x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.471

6363

\[ {}2 \left (x^{3}+x^{2}\right ) y^{\prime \prime }-\left (-3 x^{2}+x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.813

6364

\[ {}4 x y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.807

6365

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.766

6366

\[ {}x y^{\prime \prime }+y^{\prime }+y x = 0 \]

[_Lienard]

0.628

6367

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.717

6368

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.177

6369

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

0.724

6370

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.904

6371

\[ {}2 x y^{\prime \prime }+y^{\prime }-y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

0.948

6372

\[ {}2 x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.808

6373

\[ {}x^{3} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.757

6374

\[ {}z^{\prime \prime }+t z^{\prime }+\left (t^{2}-\frac {1}{9}\right ) z = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.562

6375

\[ {}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.978

6376

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-\left (2 x +1\right ) \left (-y+y^{\prime } x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.980

6377

\[ {}x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.003

6378

\[ {}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.006

6379

\[ {}2 \left (2-x \right ) x^{2} y^{\prime \prime }-\left (4-x \right ) x y^{\prime }+\left (3-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.997

6380

\[ {}\left (1-x \right ) x^{2} y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.327

6381

\[ {}x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.666

6382

\[ {}x^{2} y^{\prime \prime }+4 \left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.962

6383

\[ {}x y^{\prime \prime }+\left (x^{3}+1\right ) y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.721

6384

\[ {}\left (x -1\right ) \left (x -2\right ) y^{\prime \prime }+\left (4 x -6\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.622

6385

\[ {}y^{\prime \prime }-2 y^{\prime } x +8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.485

6386

\[ {}y^{\prime \prime }-2 y^{\prime } x +8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.488

6387

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y = 0 \]
i.c.

[_Gegenbauer]

0.584

6388

\[ {}y^{\prime \prime } = \left (x -1\right ) y \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.468

6389

\[ {}x \left (x +2\right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.784

6390

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

1.092

6391

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{x}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.654

6392

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.193

6393

\[ {}2 x y^{\prime \prime }-y^{\prime }+x^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.702

6394

\[ {}\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }-y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.013

6395

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.447

6396

\[ {}x \left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.850

6397

\[ {}x y^{\prime \prime }+\left (\frac {1}{2}-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.797

6398

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.769

6399

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.709

6400

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.719