| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
\ln \left (y^{\prime }\right )+y^{\prime } x +a&=y \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
6.638 |
|
| \begin{align*}
\ln \left (y^{\prime }\right )+y^{\prime } x +a +b y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
12.862 |
|
| \begin{align*}
\ln \left (y^{\prime }\right )+4 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
8.315 |
|
| \begin{align*}
\ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right )&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✓ |
6.592 |
|
| \begin{align*}
a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
6.797 |
|
| \begin{align*}
y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
14.673 |
|
| \begin{align*}
y^{\prime } \ln \left (y^{\prime }\right )-\left (x +1\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
5.696 |
|
| \begin{align*}
y^{\prime } \ln \left (y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y&=0 \\
\end{align*} |
[_Clairaut] |
✓ |
✓ |
✓ |
✗ |
24.233 |
|
| \begin{align*}
\ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right )&=y \\
\end{align*} |
[_dAlembert] |
✓ |
✓ |
✓ |
✗ |
3.943 |
|
| \begin{align*}
y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.263 |
|
| \begin{align*}
y^{\prime \prime }&=x +\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.700 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {c1} \cos \left (a x \right )+\operatorname {c2} \sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
3.036 |
|
| \begin{align*}
y^{\prime \prime }&=x \,{\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
1.807 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {c1} \,{\mathrm e}^{a x}+\operatorname {c2} \,{\mathrm e}^{-b x} \\
\end{align*} |
[[_2nd_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
2.373 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.624 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.042 |
|
| \begin{align*}
y^{\prime \prime }+y&=a x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.792 |
|
| \begin{align*}
y^{\prime \prime }+y&=a \cos \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.637 |
|
| \begin{align*}
y^{\prime \prime }+y&=8 \cos \left (x \right ) \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.199 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.974 |
|
| \begin{align*}
y^{\prime \prime }+y&=a \sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.362 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (a x \right ) \sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
4.681 |
|
| \begin{align*}
y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
4.612 |
|
| \begin{align*}
y^{\prime \prime }+y&=x \left (\cos \left (x \right )-x \sin \left (x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.884 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.372 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.072 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.385 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (2 x \right ) {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
9.265 |
|
| \begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{2 x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.546 |
|
| \begin{align*}
y^{\prime \prime }-2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.815 |
|
| \begin{align*}
y^{\prime \prime }-2 y&=4 x^{2} {\mathrm e}^{x^{2}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
67.003 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.869 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=x \sin \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
68.079 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
66.624 |
|
| \begin{align*}
4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
65.905 |
|
| \begin{align*}
y^{\prime \prime }-a^{2} y&=x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
11.910 |
|
| \begin{align*}
y^{\prime \prime }&=a x +b y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
74.446 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=x^{2}+x +1 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
67.679 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=\cos \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
67.898 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=\cot \left (a x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
84.326 |
|
| \begin{align*}
y^{\prime \prime }+a^{2} y&=\sin \left (b x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
67.420 |
|
| \begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.452 |
|
| \begin{align*}
\left (b x +a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.365 |
|
| \begin{align*}
\left (x^{2}+a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
3.258 |
|
| \begin{align*}
\left (-x^{2}+a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
2.971 |
|
| \begin{align*}
y^{\prime \prime }&=\left (x^{2}+a \right ) y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
2.914 |
|
| \begin{align*}
\left (b^{2} x^{2}+a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
3.218 |
|
| \begin{align*}
\left (c \,x^{2}+b x +a \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
2.836 |
|
| \begin{align*}
\left (x^{4}+\operatorname {a1} \,x^{2}+\operatorname {a0} \right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
12.392 |
|
| \begin{align*}
a \,x^{k} y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
1.505 |
|
| \begin{align*}
\left (a +b \cos \left (2 x \right )\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[_ellipsoidal] |
✗ |
✓ |
✓ |
✗ |
3.669 |
|
| \begin{align*}
\left (a +b \cos \left (2 x \right )+k \cos \left (4 x \right )\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[_ellipsoidal] |
✗ |
✓ |
✗ |
✗ |
4.766 |
|
| \begin{align*}
y^{\prime \prime }&=2 \csc \left (x \right )^{2} y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.176 |
|
| \begin{align*}
a \csc \left (x \right )^{2} y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
4.384 |
|
| \begin{align*}
\left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}+\operatorname {a2} \csc \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✗ |
✗ |
6.394 |
|
| \begin{align*}
y^{\prime \prime }&=\left (a^{2}+\left (-1+p \right ) p \csc \left (x \right )^{2}+\left (-1+q \right ) q \sec \left (x \right )^{2}\right ) y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
7.184 |
|
| \begin{align*}
\left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[_ellipsoidal] |
✗ |
✓ |
✓ |
✗ |
3.873 |
|
| \begin{align*}
y^{\prime \prime }&=\left (1+2 \tan \left (x \right )^{2}\right ) y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.378 |
|
| \begin{align*}
-\left (a^{2}-b \,{\mathrm e}^{x}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.490 |
|
| \begin{align*}
-\left (a^{2}-{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.529 |
|
| \begin{align*}
\left (a +b \,{\mathrm e}^{x}+c \,{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
2.103 |
|
| \begin{align*}
a \,{\mathrm e}^{b x} y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.362 |
|
| \begin{align*}
\left (a +b \cosh \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
5.905 |
|
| \begin{align*}
\left (a +b \sinh \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
7.099 |
|
| \begin{align*}
\left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
[_ellipsoidal] |
✗ |
✓ |
✓ |
✗ |
3.342 |
|
| \begin{align*}
\frac {\left (a +b \right ) y}{x^{2}}+y^{\prime \prime }&=0 \\
\end{align*} |
[_Titchmarsh] |
✓ |
✓ |
✓ |
✓ |
2.028 |
|
| \begin{align*}
y x -y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.715 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
8.031 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\left (x -6\right ) x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
83.013 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
25.821 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \left (3 x^{2}+2 x +1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
97.757 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
51.426 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x}+x^{2}-\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
97.842 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=8 x^{2} {\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
19.636 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=50 \cos \left (x \right ) \cosh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
46.807 |
|
| \begin{align*}
3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
14.159 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
46.020 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
7.184 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=8 \sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
68.253 |
|
| \begin{align*}
\csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
71.508 |
|
| \begin{align*}
\csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x \tan \left (a \right )} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
98.945 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.368 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (a x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
70.645 |
|
| \begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}+\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
81.234 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x}+x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
80.199 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
57.158 |
|
| \begin{align*}
-4 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.352 |
|
| \begin{align*}
-4 y-3 y^{\prime }+y^{\prime \prime }&=10 \cos \left (2 x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
47.702 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.691 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \cos \left (x \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
23.236 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.510 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
29.468 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.712 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.049 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x} x^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
79.450 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
44.481 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.661 |
|
| \begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=\cosh \left (x \right ) {\mathrm e}^{-3 x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
37.517 |
|
| \begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.708 |
|
| \begin{align*}
12 y-7 y^{\prime }+y^{\prime \prime }&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
33.495 |
|