2.2.58 Problems 5701 to 5800

Table 2.129: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

5701

\begin{align*} \ln \left (y^{\prime }\right )+y^{\prime } x +a&=y \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

6.638

5702

\begin{align*} \ln \left (y^{\prime }\right )+y^{\prime } x +a +b y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

12.862

5703

\begin{align*} \ln \left (y^{\prime }\right )+4 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

8.315

5704

\begin{align*} \ln \left (y^{\prime }\right )+a \left (-y+y^{\prime } x \right )&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

6.592

5705

\begin{align*} a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

6.797

5706

\begin{align*} y \ln \left (y^{\prime }\right )+y^{\prime }-y \ln \left (y\right )-y x&=0 \\ \end{align*}

[_separable]

14.673

5707

\begin{align*} y^{\prime } \ln \left (y^{\prime }\right )-\left (x +1\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

5.696

5708

\begin{align*} y^{\prime } \ln \left (y^{\prime }+\sqrt {1+{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-y^{\prime } x +y&=0 \\ \end{align*}

[_Clairaut]

24.233

5709

\begin{align*} \ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right )&=y \\ \end{align*}

[_dAlembert]

3.943

5710

\begin{align*} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _quadrature]]

1.263

5711

\begin{align*} y^{\prime \prime }&=x +\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

2.700

5712

\begin{align*} y^{\prime \prime }&=\operatorname {c1} \cos \left (a x \right )+\operatorname {c2} \sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

3.036

5713

\begin{align*} y^{\prime \prime }&=x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _quadrature]]

1.807

5714

\begin{align*} y^{\prime \prime }&=\operatorname {c1} \,{\mathrm e}^{a x}+\operatorname {c2} \,{\mathrm e}^{-b x} \\ \end{align*}

[[_2nd_order, _quadrature]]

2.373

5715

\begin{align*} y^{\prime \prime }+y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.624

5716

\begin{align*} y^{\prime \prime }-y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.042

5717

\begin{align*} y^{\prime \prime }+y&=a x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.792

5718

\begin{align*} y^{\prime \prime }+y&=a \cos \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.637

5719

\begin{align*} y^{\prime \prime }+y&=8 \cos \left (x \right ) \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.199

5720

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.974

5721

\begin{align*} y^{\prime \prime }+y&=a \sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.362

5722

\begin{align*} y^{\prime \prime }+y&=\sin \left (a x \right ) \sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.681

5723

\begin{align*} y^{\prime \prime }+y&=4 x \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.612

5724

\begin{align*} y^{\prime \prime }+y&=x \left (\cos \left (x \right )-x \sin \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.884

5725

\begin{align*} y^{\prime \prime }+y&=\tan \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

1.372

5726

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.072

5727

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.385

5728

\begin{align*} y^{\prime \prime }+y&=\sin \left (2 x \right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

9.265

5729

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{2 x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.546

5730

\begin{align*} y^{\prime \prime }-2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.815

5731

\begin{align*} y^{\prime \prime }-2 y&=4 x^{2} {\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

67.003

5732

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.869

5733

\begin{align*} 4 y+y^{\prime \prime }&=x \sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

68.079

5734

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

66.624

5735

\begin{align*} 4 y+y^{\prime \prime }&=2 \tan \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

65.905

5736

\begin{align*} y^{\prime \prime }-a^{2} y&=x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.910

5737

\begin{align*} y^{\prime \prime }&=a x +b y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

74.446

5738

\begin{align*} y^{\prime \prime }+a^{2} y&=x^{2}+x +1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

67.679

5739

\begin{align*} y^{\prime \prime }+a^{2} y&=\cos \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

67.898

5740

\begin{align*} y^{\prime \prime }+a^{2} y&=\cot \left (a x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

84.326

5741

\begin{align*} y^{\prime \prime }+a^{2} y&=\sin \left (b x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

67.420

5742

\begin{align*} y^{\prime \prime }+y x&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.452

5743

\begin{align*} \left (b x +a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.365

5744

\begin{align*} \left (x^{2}+a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.258

5745

\begin{align*} \left (-x^{2}+a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.971

5746

\begin{align*} y^{\prime \prime }&=\left (x^{2}+a \right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.914

5747

\begin{align*} \left (b^{2} x^{2}+a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.218

5748

\begin{align*} \left (c \,x^{2}+b x +a \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.836

5749

\begin{align*} \left (x^{4}+\operatorname {a1} \,x^{2}+\operatorname {a0} \right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.392

5750

\begin{align*} a \,x^{k} y+y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

1.505

5751

\begin{align*} \left (a +b \cos \left (2 x \right )\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

3.669

5752

\begin{align*} \left (a +b \cos \left (2 x \right )+k \cos \left (4 x \right )\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

4.766

5753

\begin{align*} y^{\prime \prime }&=2 \csc \left (x \right )^{2} y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.176

5754

\begin{align*} a \csc \left (x \right )^{2} y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.384

5755

\begin{align*} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}+\operatorname {a2} \csc \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.394

5756

\begin{align*} y^{\prime \prime }&=\left (a^{2}+\left (-1+p \right ) p \csc \left (x \right )^{2}+\left (-1+q \right ) q \sec \left (x \right )^{2}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.184

5757

\begin{align*} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

3.873

5758

\begin{align*} y^{\prime \prime }&=\left (1+2 \tan \left (x \right )^{2}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.378

5759

\begin{align*} -\left (a^{2}-b \,{\mathrm e}^{x}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.490

5760

\begin{align*} -\left (a^{2}-{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.529

5761

\begin{align*} \left (a +b \,{\mathrm e}^{x}+c \,{\mathrm e}^{2 x}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.103

5762

\begin{align*} a \,{\mathrm e}^{b x} y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.362

5763

\begin{align*} \left (a +b \cosh \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.905

5764

\begin{align*} \left (a +b \sinh \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.099

5765

\begin{align*} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

[_ellipsoidal]

3.342

5766

\begin{align*} \frac {\left (a +b \right ) y}{x^{2}}+y^{\prime \prime }&=0 \\ \end{align*}

[_Titchmarsh]

2.028

5767

\begin{align*} y x -y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.715

5768

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

8.031

5769

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=\left (x -6\right ) x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

83.013

5770

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

25.821

5771

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \left (3 x^{2}+2 x +1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

97.757

5772

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

51.426

5773

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{2 x}+x^{2}-\cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

97.842

5774

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=8 x^{2} {\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

19.636

5775

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=50 \cos \left (x \right ) \cosh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

46.807

5776

\begin{align*} 3 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

14.159

5777

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=\cos \left (x \right ) {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

46.020

5778

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.184

5779

\begin{align*} 5 y+2 y^{\prime }+y^{\prime \prime }&=8 \sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

68.253

5780

\begin{align*} \csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

71.508

5781

\begin{align*} \csc \left (a \right )^{2} y-2 \tan \left (a \right ) y^{\prime }+y^{\prime \prime }&={\mathrm e}^{x \tan \left (a \right )} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

98.945

5782

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.368

5783

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=\cos \left (a x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

70.645

5784

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&={\mathrm e}^{x}+\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

81.234

5785

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-x}+x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

80.199

5786

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

57.158

5787

\begin{align*} -4 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.352

5788

\begin{align*} -4 y-3 y^{\prime }+y^{\prime \prime }&=10 \cos \left (2 x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

47.702

5789

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.691

5790

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \cos \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

23.236

5791

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.510

5792

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=\sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

29.468

5793

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

5.712

5794

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.049

5795

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x} x^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

79.450

5796

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{a x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

44.481

5797

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.661

5798

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=\cosh \left (x \right ) {\mathrm e}^{-3 x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

37.517

5799

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.708

5800

\begin{align*} 12 y-7 y^{\prime }+y^{\prime \prime }&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.495