2.2.65 Problems 6401 to 6500

Table 2.131: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6401

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.474

6402

\[ {}y^{\prime }+y x = \cos \left (x \right ) \]

[_linear]

0.596

6403

\[ {}y^{\prime }+y x = \frac {1}{x^{3}} \]

[_linear]

1.148

6404

\[ {}x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.087

6405

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.258

6406

\[ {}y^{\prime }-\frac {y}{x} = \cos \left (x \right ) \]

[_linear]

0.393

6407

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.306

6408

\[ {}y^{\prime \prime }+4 y x = 0 \]

[[_Emden, _Fowler]]

0.444

6409

\[ {}y^{\prime \prime }-y x = 0 \]

[[_Emden, _Fowler]]

0.530

6410

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.435

6411

\[ {}y^{\prime }-y x = 0 \]

[_separable]

0.477

6412

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.721

6413

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.438

6414

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.657

6415

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.648

6416

\[ {}y^{\prime \prime }+2 x^{3} y = 0 \]

[[_Emden, _Fowler]]

0.450

6417

\[ {}y^{\prime \prime }-y x = \frac {1}{1-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.530

6418

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

0.698

6419

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y \left (x +1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.870

6420

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

0.701

6421

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-y x = 0 \]

[[_Emden, _Fowler]]

0.617

6422

\[ {}2 x y^{\prime \prime }+y^{\prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.696

6423

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

0.713

6424

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.184

6425

\[ {}x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.151

6426

\[ {}x y^{\prime \prime }+x^{3} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.174

6427

\[ {}x y^{\prime \prime }+y^{\prime } x -y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.373

6428

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _missing_x]]

0.445

6429

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.284

6430

\[ {}x^{3} y^{\prime \prime }+y \left (x +1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.104

6431

\[ {}x y^{\prime \prime }+x^{5} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.154

6432

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.426

6433

\[ {}\cos \left (x \right ) y^{\prime \prime }-y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.881

6434

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

0.680

6435

\[ {}x^{2} y^{\prime \prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.188

6436

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

0.679

6437

\[ {}\left (x^{2}-25\right ) y^{\prime \prime }+2 y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.598

6438

\[ {}\left (x^{2}-25\right ) y^{\prime \prime }+2 y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.689

6439

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.644

6440

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.686

6441

\[ {}y^{\prime \prime }-y x = 0 \]

[[_Emden, _Fowler]]

0.428

6442

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.432

6443

\[ {}y^{\prime \prime }-2 y^{\prime } x +y = 0 \]

[_Lienard]

0.485

6444

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

0.460

6445

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.546

6446

\[ {}y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.538

6447

\[ {}\left (x -1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.493

6448

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.513

6449

\[ {}y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.573

6450

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

0.678

6451

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.587

6452

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.594

6453

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.491

6454

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (2-x \right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.611

6455

\[ {}y^{\prime \prime }-2 y^{\prime } x +8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.497

6456

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

0.576

6457

\[ {}y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.691

6458

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.753

6459

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.477

6460

\[ {}x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

0.109

6461

\[ {}x \left (x +3\right )^{2} y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.260

6462

\[ {}\left (x^{2}-9\right )^{2} y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.721

6463

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\frac {y}{\left (x -1\right )^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.384

6464

\[ {}\left (x^{3}+4 x \right ) y^{\prime \prime }-2 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.280

6465

\[ {}x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.326

6466

\[ {}\left (x^{2}+x -6\right ) y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.676

6467

\[ {}x \left (x^{2}+1\right )^{2} y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.229

6468

\[ {}x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (5+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.136

6469

\[ {}\left (x^{3}-2 x^{2}+3 x \right )^{2} y^{\prime \prime }+x \left (x -3\right )^{2} y^{\prime }-y \left (x +1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.079

6470

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+5 \left (x +1\right ) y^{\prime }+\left (x^{2}-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.694

6471

\[ {}x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+7 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.210

6472

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.879

6473

\[ {}x y^{\prime \prime }+y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

0.737

6474

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

0.857

6475

\[ {}2 x y^{\prime \prime }+5 y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.720

6476

\[ {}4 x y^{\prime \prime }+\frac {y^{\prime }}{2}+y = 0 \]

[[_Emden, _Fowler]]

0.907

6477

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.873

6478

\[ {}3 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.803

6479

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {2}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.846

6480

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

[_Laguerre]

0.816

6481

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {4}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.765

6482

\[ {}9 x^{2} y^{\prime \prime }+9 x^{2} y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.924

6483

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.840

6484

\[ {}x y^{\prime \prime }+2 y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.717

6485

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.795

6486

\[ {}x y^{\prime \prime }-y^{\prime } x +y = 0 \]

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.119

6487

\[ {}y^{\prime \prime }+\frac {3 y^{\prime }}{x}-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.069

6488

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.709

6489

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.699

6490

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.052

6491

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.852

6492

\[ {}x^{4} y^{\prime \prime }+\lambda y = 0 \]

[[_Emden, _Fowler]]

0.126

6493

\[ {}x^{3} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.099

6494

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.165

6495

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.815

6496

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

1.156

6497

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.798

6498

\[ {}16 x^{2} y^{\prime \prime }+16 y^{\prime } x +\left (16 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.757

6499

\[ {}x y^{\prime \prime }+y^{\prime }+y x = 0 \]

[_Lienard]

0.631

6500

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

[_Bessel]

1.133