2.2.66 Problems 6501 to 6600

Table 2.133: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6501

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.140

6502

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.854

6503

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.790

6504

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-64\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.731

6505

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

1.149

6506

\[ {}x y^{\prime \prime }+3 y^{\prime }+y x = 0 \]

[_Lienard]

1.082

6507

\[ {}x y^{\prime \prime }-y^{\prime }+y x = 0 \]

[_Lienard]

1.071

6508

\[ {}x y^{\prime \prime }-5 y^{\prime }+y x = 0 \]

[_Lienard]

1.160

6509

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.771

6510

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.729

6511

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

0.712

6512

\[ {}9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (x^{6}-36\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.673

6513

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.452

6514

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

[[_Emden, _Fowler]]

0.652

6515

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.277

6516

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.847

6517

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.763

6518

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{4}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.845

6519

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.771

6520

\[ {}y^{\prime \prime }-y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.504

6521

\[ {}\left (x -1\right ) y^{\prime \prime }+3 y = 0 \]

[[_Emden, _Fowler]]

0.577

6522

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.493

6523

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

0.805

6524

\[ {}\cos \left (x \right ) y^{\prime \prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.790

6525

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.471

6526

\[ {}\left (x +2\right ) y^{\prime \prime }+3 y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.520

6527

\[ {}\left (x +1\right ) y^{\prime } = y \]

[_separable]

0.439

6528

\[ {}y^{\prime } = -2 y x \]

[_separable]

0.471

6529

\[ {}y^{\prime } x -3 y = k \]

[_separable]

0.425

6530

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.280

6531

\[ {}y^{\prime \prime }-y^{\prime }+y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.516

6532

\[ {}y^{\prime \prime }-y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.560

6533

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

0.545

6534

\[ {}y^{\prime \prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.471

6535

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.550

6536

\[ {}y^{\prime }+4 y = 1 \]
i.c.

[_quadrature]

0.487

6537

\[ {}y^{\prime \prime }+3 y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.500

6538

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +30 y = 0 \]
i.c.

[_Gegenbauer]

0.559

6539

\[ {}\left (x -2\right ) y^{\prime } = y x \]
i.c.

[_separable]

0.530

6540

\[ {}\left (x -2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.609

6541

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

0.725

6542

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

1.055

6543

\[ {}x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+y \left (x +1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.763

6544

\[ {}x y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.211

6545

\[ {}y^{\prime \prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.550

6546

\[ {}x y^{\prime \prime }+y^{\prime }+y x = 0 \]

[_Lienard]

0.582

6547

\[ {}2 x \left (x -1\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Jacobi]

0.802

6548

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.714

6549

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.815

6550

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.799

6551

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.765

6552

\[ {}2 x \left (1-x \right ) y^{\prime \prime }-\left (1+6 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.830

6553

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

0.848

6554

\[ {}4 x y^{\prime \prime }+y^{\prime }+8 y = 0 \]

[[_Emden, _Fowler]]

0.802

6555

\[ {}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.651

6556

\[ {}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.654

6557

\[ {}3 t \left (1+t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.244

6558

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {4}{49}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.772

6559

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {y}{4} = 0 \]

[[_Emden, _Fowler]]

0.712

6560

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{-2 x}-\frac {1}{9}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.961

6561

\[ {}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.826

6562

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.802

6563

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+16 x \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.671

6564

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-6\right ) y = 0 \]

[_Bessel]

0.788

6565

\[ {}x y^{\prime \prime }+5 y^{\prime }+y x = 0 \]

[_Lienard]

1.083

6566

\[ {}9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (36 x^{4}-16\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.778

6567

\[ {}y^{\prime \prime }+y x = 0 \]

[[_Emden, _Fowler]]

0.435

6568

\[ {}4 x y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.704

6569

\[ {}x y^{\prime \prime }+y^{\prime }+36 y = 0 \]

[[_Emden, _Fowler]]

0.691

6570

\[ {}y^{\prime \prime }+k^{2} x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.447

6571

\[ {}y^{\prime \prime }+k^{2} x^{4} y = 0 \]

[[_Emden, _Fowler]]

0.483

6572

\[ {}x y^{\prime \prime }-5 y^{\prime }+y x = 0 \]

[_Lienard]

1.122

6573

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.482

6574

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.760

6575

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-\left (x -1\right ) y^{\prime }-35 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.617

6576

\[ {}16 \left (x +1\right )^{2} y^{\prime \prime }+3 y = 0 \]

[[_Emden, _Fowler]]

0.579

6577

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y = 0 \]

[_Bessel]

0.855

6578

\[ {}x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.859

6579

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

0.783

6580

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

0.695

6581

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

[[_Emden, _Fowler]]

1.088

6582

\[ {}x y^{\prime \prime }+y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.581

6583

\[ {}y^{\prime }+\frac {26 y}{5} = \frac {97 \sin \left (2 t \right )}{5} \]
i.c.

[[_linear, ‘class A‘]]

0.323

6584

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

0.226

6585

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.332

6586

\[ {}y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.398

6587

\[ {}y^{\prime \prime }-\frac {y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.279

6588

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.375

6589

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.317

6590

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.289

6591

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.287

6592

\[ {}y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.259

6593

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.319

6594

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.441

6595

\[ {}y^{\prime }-6 y = 0 \]
i.c.

[_quadrature]

0.239

6596

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.513

6597

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.386

6598

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.266

6599

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.305

6600

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.276