# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (9 x^{2}-4\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.140 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.854 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (25 x^{2}-\frac {4}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.790 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (2 x^{2}-64\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.731 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+4 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.149 |
|
\[
{}x y^{\prime \prime }+3 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
1.082 |
|
\[
{}x y^{\prime \prime }-y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
1.071 |
|
\[
{}x y^{\prime \prime }-5 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
1.160 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.771 |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.729 |
|
\[
{}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.712 |
|
\[
{}9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (x^{6}-36\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.673 |
|
\[
{}y^{\prime \prime }-x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.452 |
|
\[
{}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.652 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.277 |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.847 |
|
\[
{}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.763 |
|
\[
{}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{4}+3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.845 |
|
\[
{}2 x y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.771 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.504 |
|
\[
{}\left (x -1\right ) y^{\prime \prime }+3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.577 |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }+y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.493 |
|
\[
{}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0
\] |
[_Laguerre] |
✓ |
0.805 |
|
\[
{}\cos \left (x \right ) y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.790 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.471 |
|
\[
{}\left (x +2\right ) y^{\prime \prime }+3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.520 |
|
\[
{}\left (x +1\right ) y^{\prime } = y
\] |
[_separable] |
✓ |
0.439 |
|
\[
{}y^{\prime } = -2 y x
\] |
[_separable] |
✓ |
0.471 |
|
\[
{}y^{\prime } x -3 y = k
\] |
[_separable] |
✓ |
0.425 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.280 |
|
\[
{}y^{\prime \prime }-y^{\prime }+y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.516 |
|
\[
{}y^{\prime \prime }-y^{\prime }+x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.560 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.545 |
|
\[
{}y^{\prime \prime }+\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.471 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.550 |
|
\[
{}y^{\prime }+4 y = 1
\] |
[_quadrature] |
✓ |
0.487 |
|
\[
{}y^{\prime \prime }+3 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.500 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +30 y = 0
\] |
[_Gegenbauer] |
✓ |
0.559 |
|
\[
{}\left (x -2\right ) y^{\prime } = y x
\] |
[_separable] |
✓ |
0.530 |
|
\[
{}\left (x -2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.609 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
0.725 |
|
\[
{}x y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.055 |
|
\[
{}x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+y \left (x +1\right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.763 |
|
\[
{}x y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.211 |
|
\[
{}y^{\prime \prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.550 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
0.582 |
|
\[
{}2 x \left (x -1\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0
\] |
[_Jacobi] |
✓ |
0.802 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+4 y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.714 |
|
\[
{}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.815 |
|
\[
{}x^{2} y^{\prime \prime }+6 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.799 |
|
\[
{}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.765 |
|
\[
{}2 x \left (1-x \right ) y^{\prime \prime }-\left (1+6 x \right ) y^{\prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.830 |
|
\[
{}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0
\] |
[_Jacobi] |
✓ |
0.848 |
|
\[
{}4 x y^{\prime \prime }+y^{\prime }+8 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.802 |
|
\[
{}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.651 |
|
\[
{}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.654 |
|
\[
{}3 t \left (1+t \right ) y^{\prime \prime }+t y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.244 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {4}{49}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.772 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+\frac {y}{4} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.712 |
|
\[
{}y^{\prime \prime }+\left ({\mathrm e}^{-2 x}-\frac {1}{9}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.961 |
|
\[
{}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.826 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.802 |
|
\[
{}\left (2 x +1\right )^{2} y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+16 x \left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.671 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-6\right ) y = 0
\] |
[_Bessel] |
✓ |
0.788 |
|
\[
{}x y^{\prime \prime }+5 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
1.083 |
|
\[
{}9 x^{2} y^{\prime \prime }+9 y^{\prime } x +\left (36 x^{4}-16\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.778 |
|
\[
{}y^{\prime \prime }+y x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.435 |
|
\[
{}4 x y^{\prime \prime }+4 y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.704 |
|
\[
{}x y^{\prime \prime }+y^{\prime }+36 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.691 |
|
\[
{}y^{\prime \prime }+k^{2} x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.447 |
|
\[
{}y^{\prime \prime }+k^{2} x^{4} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.483 |
|
\[
{}x y^{\prime \prime }-5 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
1.122 |
|
\[
{}y^{\prime \prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.482 |
|
\[
{}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.760 |
|
\[
{}\left (x -1\right )^{2} y^{\prime \prime }-\left (x -1\right ) y^{\prime }-35 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.617 |
|
\[
{}16 \left (x +1\right )^{2} y^{\prime \prime }+3 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.579 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y = 0
\] |
[_Bessel] |
✓ |
0.855 |
|
\[
{}x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.859 |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0
\] |
[_Laguerre] |
✓ |
0.783 |
|
\[
{}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.695 |
|
\[
{}y^{\prime \prime }+\frac {y}{4 x} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.088 |
|
\[
{}x y^{\prime \prime }+y^{\prime }-y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.581 |
|
\[
{}y^{\prime }+\frac {26 y}{5} = \frac {97 \sin \left (2 t \right )}{5}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.323 |
|
\[
{}y^{\prime }+2 y = 0
\] |
[_quadrature] |
✓ |
0.226 |
|
\[
{}y^{\prime \prime }-y^{\prime }-6 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.332 |
|
\[
{}y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.398 |
|
\[
{}y^{\prime \prime }-\frac {y}{4} = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.279 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.375 |
|
\[
{}y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.317 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.289 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.287 |
|
\[
{}y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.259 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.319 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-3 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.441 |
|
\[
{}y^{\prime }-6 y = 0
\] |
[_quadrature] |
✓ |
0.239 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.513 |
|
\[
{}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.386 |
|
\[
{}9 y^{\prime \prime }-6 y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.266 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.305 |
|
\[
{}y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.276 |
|