2.2.67 Problems 6601 to 6700

Table 2.135: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6601

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

5.978

6602

\[ {}\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

2.711

6603

\[ {}y^{2}+x y-x y^{\prime } = 0 \]
i.c.

[_rational, _Bernoulli]

1.271

6604

\[ {}y^{\prime } = -2 \left (2 x +3 y\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

10.519

6605

\[ {}x -2 \sin \left (y\right )+3+\left (2 x -4 \sin \left (y\right )-3\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6.904

6606

\[ {}x^{2}-y-x y^{\prime } = 0 \]

[_linear]

0.185

6607

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

0.341

6608

\[ {}x +y \cos \left (x \right )+\sin \left (x \right ) y^{\prime } = 0 \]

[_linear]

0.211

6609

\[ {}2 x +3 y+4+\left (3 x +4 y+5\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.333

6610

\[ {}4 x^{3} y^{3}+\frac {1}{x}+\left (3 x^{4} y^{2}-\frac {1}{y}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational]

0.467

6611

\[ {}2 u^{2}+2 u v+\left (u^{2}+v^{2}\right ) v^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.263

6612

\[ {}x \sqrt {y^{2}+x^{2}}-y+\left (y \sqrt {y^{2}+x^{2}}-x \right ) y^{\prime } = 0 \]

[_exact]

0.319

6613

\[ {}x +y+1-\left (y-x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.308

6614

\[ {}y^{2}-\frac {y}{\left (x +y\right ) x}+2+\left (\frac {1}{x +y}+2 \left (x +1\right ) y\right ) y^{\prime } = 0 \]

[_exact, _rational]

0.350

6615

\[ {}2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime } = 0 \]

[_exact]

0.319

6616

\[ {}y \left (x -2 y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.815

6617

\[ {}x y y^{\prime }+x^{2}+y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.644

6618

\[ {}x^{2}+y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

3.918

6619

\[ {}1-\sqrt {a^{2}-x^{2}}\, y^{\prime } = 0 \]

[_quadrature]

0.524

6620

\[ {}x +y+1-\left (x -y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.842

6621

\[ {}x -x^{2}-y^{2}+y^{\prime } y = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

0.405

6622

\[ {}2 y-3 x +x y^{\prime } = 0 \]

[_linear]

0.211

6623

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.351

6624

\[ {}-y-3 x^{2} \left (y^{2}+x^{2}\right )+x y^{\prime } = 0 \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

0.395

6625

\[ {}y-\ln \left (x \right )-x y^{\prime } = 0 \]

[_linear]

0.217

6626

\[ {}3 x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

0.339

6627

\[ {}x y-2 y^{2}-\left (x^{2}-3 x y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.470

6628

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.399

6629

\[ {}2 y-3 x y^{2}-x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.744

6630

\[ {}y+x \left (x^{2} y-1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.310

6631

\[ {}y+x^{3} y+2 x^{2}+\left (x +4 x y^{4}+8 y^{3}\right ) y^{\prime } = 0 \]

[_rational]

0.344

6632

\[ {}-y-x^{2} {\mathrm e}^{x}+x y^{\prime } = 0 \]

[_linear]

0.222

6633

\[ {}1+y^{2} = \left (x^{2}+x \right ) y^{\prime } \]

[_separable]

2.090

6634

\[ {}2 y-x^{3}+x y^{\prime } = 0 \]

[_linear]

0.214

6635

\[ {}y+\left (y^{2}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

0.439

6636

\[ {}3 y^{3}-x y-\left (x^{2}+6 x y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

0.550

6637

\[ {}3 x^{2} y^{2}+4 \left (x^{3} y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.251

6638

\[ {}y \left (x +y\right )-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

0.274

6639

\[ {}2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.447

6640

\[ {}y \left (y^{2}-2 x^{2}\right )+x \left (2 y^{2}-x^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.739

6641

\[ {}-y+x y^{\prime } = 0 \]

[_separable]

0.201

6642

\[ {}y^{\prime }+y = 2 x +2 \]

[[_linear, ‘class A‘]]

1.114

6643

\[ {}y^{\prime }-y = x y \]

[_separable]

1.223

6644

\[ {}-3 y-\left (-2+x \right ) {\mathrm e}^{x}+x y^{\prime } = 0 \]

[_linear]

2.369

6645

\[ {}i^{\prime }-6 i = 10 \sin \left (2 t \right ) \]

[[_linear, ‘class A‘]]

1.306

6646

\[ {}y^{\prime }+y = y^{2} {\mathrm e}^{x} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.005

6647

\[ {}y+\left (x y+x -3 y\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1.032

6648

\[ {}\left (2 s-{\mathrm e}^{2 t}\right ) s^{\prime } = 2 s \,{\mathrm e}^{2 t}-2 \cos \left (2 t \right ) \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

6.635

6649

\[ {}x y^{\prime }+y-x^{3} y^{6} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.242

6650

\[ {}r^{\prime }+2 r \cos \left (\theta \right )+\sin \left (2 \theta \right ) = 0 \]

[_linear]

1.666

6651

\[ {}y \left (1+y^{2}\right ) = 2 \left (1-2 x y^{2}\right ) y^{\prime } \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.599

6652

\[ {}y^{\prime } y-x y^{2}+x = 0 \]

[_separable]

1.695

6653

\[ {}\left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y = 0 \]

[‘y=_G(x,y’)‘]

4.088

6654

\[ {}2 x^{\prime }-\frac {x}{y}+x^{3} \cos \left (y \right ) = 0 \]

[_Bernoulli]

5.803

6655

\[ {}x y^{\prime } = y \left (1-x \tan \left (x \right )\right )+x^{2} \cos \left (x \right ) \]

[_linear]

13.980

6656

\[ {}2+y^{2}-\left (x y+2 y+y^{3}\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6.098

6657

\[ {}1+y^{2} = \left (\arctan \left (y\right )-x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

5.541

6658

\[ {}2 y^{5} x -y+2 x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.764

6659

\[ {}1+\sin \left (y\right ) = \left (2 y \cos \left (y\right )-x \left (\sec \left (y\right )+\tan \left (y\right )\right )\right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

37.596

6660

\[ {}x y^{\prime } = 2 y+x^{3} {\mathrm e}^{x} \]
i.c.

[_linear]

1.644

6661

\[ {}L i^{\prime }+R i = E \sin \left (2 t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.557

6662

\[ {}x^{2} \cos \left (y\right ) y^{\prime } = 2 x \sin \left (y\right )-1 \]

[‘y=_G(x,y’)‘]

2.094

6663

\[ {}4 x^{2} y y^{\prime } = 3 x \left (3 y^{2}+2\right )+2 \left (3 y^{2}+2\right )^{3} \]

[_rational]

2.467

6664

\[ {}x y^{3}-y^{3}-x^{2} {\mathrm e}^{x}+3 x y^{2} y^{\prime } = 0 \]

[_Bernoulli]

2.227

6665

\[ {}y^{\prime }+\left (x +y\right ) x = x^{3} \left (x +y\right )^{3}-1 \]

[_Abel]

1.809

6666

\[ {}y+{\mathrm e}^{y}-{\mathrm e}^{-x}+\left (1+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

1.710

6667

\[ {}x^{2} {y^{\prime }}^{2}+x y y^{\prime }-6 y^{2} = 0 \]

[_separable]

3.034

6668

\[ {}x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-x \left (y-1\right ) = 0 \]

[_quadrature]

1.729

6669

\[ {}x {y^{\prime }}^{2}-2 y^{\prime } y+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.517

6670

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.914

6671

\[ {}8 y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.725

6672

\[ {}y^{2} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.639

6673

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.341

6674

\[ {}16 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.420

6675

\[ {}x {y^{\prime }}^{5}-y {y^{\prime }}^{4}+\left (x^{2}+1\right ) {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+\left (y^{2}+x \right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.753

6676

\[ {}x {y^{\prime }}^{2}-y^{\prime } y-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.127

6677

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries]]

106.514

6678

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.440

6679

\[ {}y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.492

6680

\[ {}y = 2 y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \]

[_quadrature]

2.766

6681

\[ {}y {y^{\prime }}^{2}-x y^{\prime }+3 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.277

6682

\[ {}y = x y^{\prime }-2 {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.333

6683

\[ {}y^{2} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.628

6684

\[ {}x {y^{\prime }}^{2}-2 y^{\prime } y+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.514

6685

\[ {}x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.698

6686

\[ {}\left (3 y-1\right )^{2} {y^{\prime }}^{2} = 4 y \]

[_quadrature]

76.214

6687

\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

1.924

6688

\[ {}2 y = {y^{\prime }}^{2}+4 x y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.439

6689

\[ {}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

[_quadrature]

12.471

6690

\[ {}{y^{\prime }}^{3}-4 x^{4} y^{\prime }+8 x^{3} y = 0 \]

[[_1st_order, _with_linear_symmetries]]

76.833

6691

\[ {}\left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2} = \left (x +y^{\prime } y\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.260

6692

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

0.838

6693

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

0.069

6694

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.981

6695

\[ {}y^{\prime \prime }+9 y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.902

6696

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.147

6697

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 3 x^{4} \]

[[_3rd_order, _with_linear_symmetries]]

0.262

6698

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.342

6699

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.381

6700

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.301