2.2.67 Problems 6601 to 6700

Table 2.135: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

6601

cos(y)+(1+ex)sin(y)y=0
i.c.

[_separable]

6602

y2+xyyx=0
i.c.

[_rational, _Bernoulli]

6603

y=2(2x+3y)2

[[_homogeneous, ‘class C‘], _Riccati]

6604

x2sin(y)+3+(2x4sin(y)3)cos(y)y=0

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6605

x2yyx=0

[_linear]

6606

x2+y2+2xyy=0

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6607

x+cos(x)y+ysin(x)=0

[_linear]

6608

2x+3y+4+(3x+4y+5)y=0

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6609

4x3y3+1x+(3x4y21y)y=0

[[_homogeneous, ‘class G‘], _exact, _rational]

6610

2u2+2uv+(u2+v2)v=0

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

6611

xx2+y2y+(yx2+y2x)y=0

[_exact]

6612

x+y+1(3x+y)y=0

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6613

y2y(x+y)x+2+(1x+y+2(x+1)y)y=0

[_exact, _rational]

6614

2xyex2y+y2exy2+1+(x2ex2y+2xyexy22y)y=0

[_exact]

6615

y(x2y)x2y=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6616

xyy+x2+y2=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6617

x2+y2+2xyy=0

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

6618

1a2x2y=0

[_quadrature]

6619

x+y+1(xy3)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6620

xx2y2+yy=0

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

6621

2y3x+yx=0

[_linear]

6622

xy2+2xyy=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6623

y3x2(x2+y2)+yx=0

[[_homogeneous, ‘class D‘], _rational, _Riccati]

6624

yln(x)yx=0

[_linear]

6625

3x2+y22xyy=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6626

xy2y2(x23xy)y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6627

x+y(xy)y=0

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6628

2y3xy2yx=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6629

y+x(x2y1)y=0

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6630

y+x3y+2x2+(x+4xy4+8y3)y=0

[_rational]

6631

yx2ex+yx=0

[_linear]

6632

1+y2=(x2+x)y

[_separable]

6633

2yx3+yx=0

[_linear]

6634

y+(x+y2)y=0

[[_homogeneous, ‘class G‘], _rational]

6635

3y3xy(x2+6xy2)y=0

[[_homogeneous, ‘class G‘], _rational]

6636

3x2y2+4(x3y3)y=0

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6637

y(x+y)x2y=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6638

2y+3xy2+(x+2x2y)y=0

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6639

y(y22x2)+x(2y2x2)y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6640

yxy=0

[_separable]

6641

y+y=2x+2

[[_linear, ‘class A‘]]

6642

yy=xy

[_separable]

6643

3y(x2)ex+yx=0

[_linear]

6644

i6i=10sin(2t)

[[_linear, ‘class A‘]]

6645

y+y=y2ex

[[_1st_order, _with_linear_symmetries], _Bernoulli]

6646

y+(xy+x3y)y=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

6647

(2se2t)s=2se2t2cos(2t)

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

6648

yx+yx3y6=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6649

r+2rcos(θ)+sin(2θ)=0

[_linear]

6650

y(1+y2)=2(12xy2)y

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6651

yyxy2+x=0

[_separable]

6652

(xxx2y2)yy=0

[‘y=_G(x,y’)‘]

6653

2xxy+x3cos(y)=0

[_Bernoulli]

6654

yx=y(1xtan(x))+x2cos(x)

[_linear]

6655

2+y2(xy+2y+y3)y=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6656

1+y2=(arctan(y)x)y

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

6657

2y5xy+2yx=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

6658

1+sin(y)=(2ycos(y)x(sec(y)+tan(y)))y

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6659

yx=2y+x3ex
i.c.

[_linear]

6660

Li+Ri=Esin(2t)
i.c.

[[_linear, ‘class A‘]]

6661

x2ycos(y)=2xsin(y)1

[‘y=_G(x,y’)‘]

6662

4x2yy=3x(3y2+2)+2(3y2+2)3

[_rational]

6663

xy3y3x2ex+3xy2y=0

[_Bernoulli]

6664

y+(x+y)x=x3(x+y)31

[_Abel]

6665

y+eyex+(1+ey)y=0

[‘y=_G(x,y’)‘]

6666

x2y2+xyy6y2=0

[_separable]

6667

xy2+(y1x2)yx(1+y)=0

[_quadrature]

6668

4x2yy+xy2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6669

3x4y2yxy=0

[[_homogeneous, ‘class G‘], _rational]

6670

8yy22yx+y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6671

y2y2+3yxy=0

[[_1st_order, _with_linear_symmetries], _rational]

6672

y2yx+y=0

[[_1st_order, _with_linear_symmetries], _Clairaut]

6673

16y3y24yx+y=0

[[_1st_order, _with_linear_symmetries], _rational]

6674

xy5yy4+(x2+1)y32xyy2+(x+y2)yy=0

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

6675

xy2yyy=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6676

y=2yx+y2y3

[[_1st_order, _with_linear_symmetries]]

6677

y2yxy=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

6678

y=x(y+1)+y2

[[_1st_order, _with_linear_symmetries], _dAlembert]

6679

y=2y+y2+1

[_quadrature]

6680

yy2yx+3y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6681

y=yx2y2

[[_1st_order, _with_linear_symmetries], _Clairaut]

6682

y2y2+3yxy=0

[[_1st_order, _with_linear_symmetries], _rational]

6683

4x2yy+xy2=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6684

xy22yy+x+2y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6685

(3y1)2y2=4y

[_quadrature]

6686

y=yx+x4y2

[[_homogeneous, ‘class G‘], _rational]

6687

2y=y2+4yx

[[_1st_order, _with_linear_symmetries], _dAlembert]

6688

y(34y)2y2=44y

[_quadrature]

6689

y34x4y+8x3y=0

[[_1st_order, _with_linear_symmetries]]

6690

(y2+1)(xy)2=(yy+x)2

[[_homogeneous, ‘class A‘], _dAlembert]

6691

y+y6y=0

[[_2nd_order, _missing_x]]

6692

y6y+12y8y=0

[[_3rd_order, _missing_x]]

6693

y3y+2y=e5x

[[_2nd_order, _with_linear_symmetries]]

6694

y+9y=xcos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

6695

x2y3yx+4y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6696

x3y+yxy=3x4

[[_3rd_order, _with_linear_symmetries]]

6697

xyy+4x3y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6698

y+y2+1=0

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6699

yy+y2=2

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6700

yy+y3=0

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]