2.2.67 Problems 6601 to 6700

Table 2.135: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6601

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0<t <\pi \\ 0 & \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.557

6602

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.477

6603

\[ {}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.817

6604

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.465

6605

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.534

6606

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.709

6607

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.687

6608

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.375

6609

\[ {}y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.448

6610

\[ {}y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.378

6611

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.465

6612

\[ {}4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.445

6613

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.455

6614

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.585

6615

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\operatorname {Heaviside}\left (t -\pi \right ) \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.513

6616

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right )+\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.385

6617

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.444

6618

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

1.455

6619

\[ {}y^{\prime } = \frac {x^{2}}{y \left (x^{3}+1\right )} \]

[_separable]

1.122

6620

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

1.290

6621

\[ {}y^{\prime } x = \sqrt {1-y^{2}} \]

[_separable]

2.185

6622

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

1.128

6623

\[ {}x y y^{\prime } = \sqrt {1+y^{2}} \]

[_separable]

5.816

6624

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

1.860

6625

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

0.626

6626

\[ {}y^{\prime } x +y = y^{2} \]
i.c.

[_separable]

1.955

6627

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

2.046

6628

\[ {}y^{\prime }-x y^{2} = 2 y x \]

[_separable]

1.818

6629

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

[_quadrature]

0.429

6630

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{-2+2 y} \]
i.c.

[_separable]

1.382

6631

\[ {}{\mathrm e}^{x}-\left (1+{\mathrm e}^{x}\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

1.431

6632

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{1+y} = 0 \]

[_separable]

2.445

6633

\[ {}x +2 x^{3}+\left (y+2 y^{3}\right ) y^{\prime } = 0 \]

[_separable]

1.777

6634

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

14.425

6635

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

[_separable]

20.856

6636

\[ {}2 x \sqrt {1-y^{2}}+y y^{\prime } = 0 \]

[_separable]

1.868

6637

\[ {}y^{\prime } = \left (-1+y\right ) \left (x +1\right ) \]

[_separable]

1.055

6638

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

1.355

6639

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

9.376

6640

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

2.946

6641

\[ {}z^{\prime } = 10^{x +z} \]

[_separable]

1.833

6642

\[ {}x^{\prime }+t = 1 \]

[_quadrature]

0.213

6643

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.231

6644

\[ {}y^{\prime }-y = 2 x -3 \]

[[_linear, ‘class A‘]]

0.870

6645

\[ {}\left (x +2 y\right ) y^{\prime } = 1 \]
i.c.

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1.927

6646

\[ {}y^{\prime }+y = 2 x +1 \]

[[_linear, ‘class A‘]]

0.852

6647

\[ {}y^{\prime } = \cos \left (x -y-1\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.444

6648

\[ {}y^{\prime }+\sin \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5.788

6649

\[ {}y^{\prime } = 2 \sqrt {2 x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.888

6650

\[ {}y^{\prime } = \left (x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4.359

6651

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1.667

6652

\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime } = 0 \]

[_separable]

2.151

6653

\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.545

6654

\[ {}y-2 y x +x^{2} y^{\prime } = 0 \]

[_separable]

1.342

6655

\[ {}2 y^{\prime } x = y \left (2 x^{2}-y^{2}\right ) \]

[_rational, _Bernoulli]

1.247

6656

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

36.344

6657

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 y x \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.692

6658

\[ {}-y+y^{\prime } x = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.848

6659

\[ {}y^{\prime } x = y-x \,{\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

8.628

6660

\[ {}-y+y^{\prime } x = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.155

6661

\[ {}y^{\prime } x = y \cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.885

6662

\[ {}y+\sqrt {y x}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7.442

6663

\[ {}y^{\prime } x -\sqrt {x^{2}-y^{2}}-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

66.923

6664

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.474

6665

\[ {}x^{2}+2 y x -y^{2}+\left (y^{2}+2 y x -x^{2}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.964

6666

\[ {}-y+y^{\prime } x = y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.159

6667

\[ {}y^{2}+\left (x^{2}-y x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

36.849

6668

\[ {}x^{2}+y x +y^{2} = x^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.927

6669

\[ {}\frac {1}{x^{2}-y x +y^{2}} = \frac {y^{\prime }}{2 y^{2}-y x} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

24.757

6670

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.484

6671

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.227

6672

\[ {}y^{\prime } x = y+\sqrt {y^{2}-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.097

6673

\[ {}y+\left (2 \sqrt {y x}-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

82.382

6674

\[ {}y^{\prime } x = y \ln \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

2.750

6675

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]
i.c.

[_quadrature]

1.262

6676

\[ {}\left (y^{\prime } x +y\right )^{2} = y^{2} y^{\prime } \]

[[_homogeneous, ‘class A‘], _dAlembert]

151.661

6677

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

[_separable]

2.473

6678

\[ {}-y+y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.044

6679

\[ {}y {y^{\prime }}^{2}+2 y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.958

6680

\[ {}y^{\prime }+\frac {x +2 y}{x} = 0 \]

[_linear]

1.790

6681

\[ {}y^{\prime } = \frac {y}{x +y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.056

6682

\[ {}y^{\prime } x = x +\frac {y}{2} \]
i.c.

[_linear]

5.359

6683

\[ {}y^{\prime } = \frac {x +y-2}{y-x -4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.377

6684

\[ {}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.071

6685

\[ {}y^{\prime } = \frac {2 y-x +5}{2 x -y-4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.017

6686

\[ {}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.516

6687

\[ {}y^{\prime } = \frac {x +3 y-5}{x -y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.746

6688

\[ {}y^{\prime } = \frac {2 \left (2+y\right )^{2}}{\left (x +y+1\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational]

1.670

6689

\[ {}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.323

6690

\[ {}x -y-1+\left (y-x +2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.380

6691

\[ {}\left (x +4 y\right ) y^{\prime } = 2 x +3 y-5 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.687

6692

\[ {}2+y = \left (2 x +y-4\right ) y^{\prime } \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.837

6693

\[ {}\left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3} \]

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

6.984

6694

\[ {}y^{\prime } = \frac {x -2 y+5}{y-2 x -4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.932

6695

\[ {}y^{\prime } = \frac {3 x -y+1}{2 x +y+4} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.395

6696

\[ {}2 y^{\prime } x +\left (x^{2} y^{4}+1\right ) y = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.017

6697

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

[[_homogeneous, ‘class G‘], _rational]

0.529

6698

\[ {}x^{3} \left (y^{\prime }-x \right ) = y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Riccati]

0.264

6699

\[ {}2 x^{2} y^{\prime } = y^{3}+y x \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.575

6700

\[ {}y+x \left (2 y x +1\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.399