2.2.68 Problems 6701 to 6800

Table 2.137: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6701

\[ {}2 y^{\prime }+x = 4 \sqrt {y} \]

[[_1st_order, _with_linear_symmetries], _Chini]

1.098

6702

\[ {}y^{\prime } = y^{2}-\frac {2}{x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

0.543

6703

\[ {}2 y^{\prime } x +y = y^{2} \sqrt {x -x^{2} y^{2}} \]

[[_homogeneous, ‘class G‘]]

10.108

6704

\[ {}\frac {2 x y y^{\prime }}{3} = \sqrt {x^{6}-y^{4}}+y^{2} \]

[[_homogeneous, ‘class G‘]]

4.220

6705

\[ {}2 y+\left (x^{2} y+1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.351

6706

\[ {}y \left (y x +1\right )+\left (1-y x \right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.411

6707

\[ {}y \left (x^{2} y^{2}+1\right )+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

0.553

6708

\[ {}\left (x^{2}-y^{4}\right ) y^{\prime }-y x = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.312

6709

\[ {}y \left (1+\sqrt {x^{2} y^{4}-1}\right )+2 y^{\prime } x = 0 \]

[[_homogeneous, ‘class G‘]]

0.762

6710

\[ {}x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.736

6711

\[ {}\frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

1.481

6712

\[ {}2 x +3+\left (-2+2 y\right ) y^{\prime } = 0 \]

[_separable]

2.309

6713

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.013

6714

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.035

6715

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.228

6716

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.506

6717

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.831

6718

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.890

6719

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.189

6720

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.858

6721

\[ {}y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.041

6722

\[ {}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.314

6723

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

2.122

6724

\[ {}x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.301

6725

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.444

6726

\[ {}y^{\prime \prime }+y^{\prime } x +y = 2 x \,{\mathrm e}^{x}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.981

6727

\[ {}x y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x \]

[[_2nd_order, _with_linear_symmetries]]

1.468

6728

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.061

6729

\[ {}x^{3} y^{\prime \prime }+y^{\prime } x -y = \cos \left (\frac {1}{x}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

2.102

6730

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1.662

6731

\[ {}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

1.295

6732

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.778

6733

\[ {}x^{2} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-y^{\prime } x +y = x \left (1-\ln \left (x \right )\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

0.821

6734

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.567

6735

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.732

6736

\[ {}\left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.305

6737

\[ {}\left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) y = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.379

6738

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

[_separable]

2.103

6739

\[ {}y^{\prime } = \frac {x^{2}}{1-y^{2}} \]

[_separable]

1.005

6740

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{-2+2 y} \]
i.c.

[_separable]

1.457

6741

\[ {}y^{\prime } x -2 \sqrt {y x} = y \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.987

6742

\[ {}y^{\prime } = \frac {x +y-1}{x -y+3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.657

6743

\[ {}{\mathrm e}^{x}+y+\left (x -2 \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

1.918

6744

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

[_rational]

1.382

6745

\[ {}y^{2}-y x +x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.788

6746

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.449

6747

\[ {}y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.788

6748

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

[_separable]

2.186

6749

\[ {}y^{\prime } = -\frac {y}{t}-1-y^{2} \]

[_rational, _Riccati]

1.154

6750

\[ {}x +y y^{\prime } = a {y^{\prime }}^{2} \]

unknown

365.720

6751

\[ {}{y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

[_quadrature]

0.731

6752

\[ {}{y^{\prime }}^{2} = 4 x^{2} \]

[_quadrature]

0.384

6753

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

0.734

6754

\[ {}s^{\prime \prime }+2 s^{\prime }+s = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.075

6755

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.372

6756

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 x +1 \]

[[_2nd_order, _with_linear_symmetries]]

0.932

6757

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.018

6758

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.229

6759

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.098

6760

\[ {}p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.782

6761

\[ {}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]

[_Lienard]

3.334

6762

\[ {}3 {y^{\prime \prime }}^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } {y^{\prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.481

6763

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.574

6764

\[ {}x^{2} y y^{\prime \prime } = x^{2} {y^{\prime }}^{2}-y^{2} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.082

6765

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t} \]

[[_3rd_order, _with_linear_symmetries]]

0.118

6766

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.310

6767

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.471

6768

\[ {}y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t} = 0 \]

[[_high_order, _missing_y]]

0.207

6769

\[ {}x x^{\prime \prime }-{x^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.224

6770

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.611

6771

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.945

6772

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.968

6773

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.957

6774

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.569

6775

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.146

6776

\[ {}y^{\prime \prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

2.650

6777

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.164

6778

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.932

6779

\[ {}y+\sqrt {x^{2}+y^{2}}-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.924

6780

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

[_quadrature]

0.613

6781

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.317

6782

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.813

6783

\[ {}y \left (x^{2} y^{2}+1\right )+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.775

6784

\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

[_rational]

1.491

6785

\[ {}\frac {1}{y}+\sec \left (\frac {y}{x}\right )-\frac {x y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘]]

30.421

6786

\[ {}\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right ) = 0 \]

[_Bernoulli]

2.855

6787

\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.806

6788

\[ {}\left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \sin \left (\theta \right )^{2}-\phi \sin \left (\theta \right ) \cos \left (\theta \right ) = \frac {\cos \left (2 \theta \right )}{2}+1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4.631

6789

\[ {}a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

2.328

6790

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

[[_high_order, _missing_x]]

0.066

6791

\[ {}y \,{\mathrm e}^{y x}+x \,{\mathrm e}^{y x} y^{\prime } = 0 \]

[_separable]

1.411

6792

\[ {}x -2 y x +{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

1.646

6793

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.233

6794

\[ {}\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.636

6795

\[ {}\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (x +1\right ) \eta ^{\prime }+\left (k +1\right ) \eta = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.637

6796

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.344

6797

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.296

6798

\[ {}-y+y^{\prime } x = x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.808

6799

\[ {}-y+y^{\prime } x = x \sqrt {x^{2}-y^{2}}\, y^{\prime } \]

[‘y=_G(x,y’)‘]

1.689

6800

\[ {}x +y y^{\prime }+y-y^{\prime } x = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.458