# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
0.531 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }-15 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.820 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.063 |
|
\[
{}y^{\prime \prime }+6 y^{\prime }+9 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.845 |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.072 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+13 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.898 |
|
\[
{}y^{\prime \prime }+25 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.951 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }+9 y^{\prime }-9 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.071 |
|
\[
{}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.070 |
|
\[
{}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.073 |
|
\[
{}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0
\] |
[[_high_order, _missing_x]] |
✓ |
0.090 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.980 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } = 5
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.540 |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime \prime } = 5
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.098 |
|
\[
{}y^{\left (5\right )}-4 y^{\prime \prime \prime } = 5
\] |
[[_high_order, _missing_x]] |
✓ |
0.117 |
|
\[
{}y^{\prime \prime \prime }-4 y^{\prime } = x
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.106 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.021 |
|
\[
{}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.068 |
|
\[
{}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.148 |
|
\[
{}y^{\prime \prime }-y = \sin \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.754 |
|
\[
{}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.330 |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.596 |
|
\[
{}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.512 |
|
\[
{}y^{\prime \prime }+y = \csc \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.753 |
|
\[
{}y^{\prime \prime }+4 y = 4 \sec \left (x \right )^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.503 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+3 y = \frac {1}{1+{\mathrm e}^{-x}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.382 |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.014 |
|
\[
{}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.319 |
|
\[
{}y^{\prime \prime }+2 y = 2+{\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.485 |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{x} \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.778 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+2 y = x^{2}+\sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
14.701 |
|
\[
{}y^{\prime \prime }-9 y = x +{\mathrm e}^{2 x}-\sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.300 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}+4 x +8
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.121 |
|
\[
{}y^{\prime \prime }+y = -2 \sin \left (x \right )+4 x \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.327 |
|
\[
{}y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.171 |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
61.632 |
|
\[
{}y^{\prime \prime }-y = {\mathrm e}^{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.098 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x}+x \,{\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.158 |
|
\[
{}y^{\prime \prime \prime \prime }-y = \sin \left (2 x \right )
\] |
[[_high_order, _linear, _nonhomogeneous]] |
✓ |
0.146 |
|
\[
{}y^{\prime \prime \prime }+y = \cos \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.137 |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.673 |
|
\[
{}y^{\prime \prime }+5 y = \cos \left (\sqrt {5}\, x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.947 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x}+{\mathrm e}^{-x}+\sin \left (x \right )
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.653 |
|
\[
{}y^{\prime \prime }-y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.029 |
|
\[
{}y^{\prime \prime }+2 y = x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
8.266 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-y = {\mathrm e}^{x} \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.800 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 x}}{x^{2}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.115 |
|
\[
{}y^{\prime \prime }-y = x \,{\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.154 |
|
\[
{}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (2 \tan \left (x \right )+1\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.008 |
|
\[
{}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x +x^{2} \ln \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.770 |
|
\[
{}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right )
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.819 |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime } = x +\sin \left (\ln \left (x \right )\right )
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.361 |
|
\[
{}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 3 x^{4}
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.259 |
|
\[
{}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
2.719 |
|
\[
{}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x
\] |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
1.419 |
|
\[
{}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0
\] |
[_Laguerre] |
✓ |
0.963 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.630 |
|
\[
{}\left (x^{2}+4\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 8
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.516 |
|
\[
{}\left (x +1\right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (x +2\right ) y = \left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.163 |
|
\[
{}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.584 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y = \left (-x^{2}+6\right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.116 |
|
\[
{}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.980 |
|
\[
{}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = \left (x^{2}-x +1\right ) {\mathrm e}^{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.521 |
|
\[
{}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.370 |
|
\[
{}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {x +1}{x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
107.525 |
|
\[
{}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.880 |
|
\[
{}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.648 |
|
\[
{}x y^{\prime \prime }-3 y^{\prime }+\frac {3 y}{x} = x +2
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.829 |
|
\[
{}\left (x +1\right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (2+3 x \right ) {\mathrm e}^{3 x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.540 |
|
\[
{}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (9 x^{2}+6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
4.579 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+4 x y = 4
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.779 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \frac {-x^{2}+1}{x}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.726 |
|
\[
{}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.388 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {2}{x^{3}}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.428 |
|
\[
{}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right )
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.269 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime \prime } = x^{2}
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.112 |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
0.525 |
|
\[
{}y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.398 |
|
\[
{}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \cos \left (y\right )+y y^{\prime } \sin \left (y\right )\right )
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
1.223 |
|
\[
{}\left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 x y^{\prime }-4 y = 8
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
0.053 |
|
\[
{}\left (2 x^{3}-1\right ) y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+6 x y^{\prime } = 0
\] |
[[_3rd_order, _missing_y]] |
✓ |
0.326 |
|
\[
{}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
4.237 |
|
\[
{}\left (x +2 y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+2 y^{\prime } = 2
\] |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
1.508 |
|
\[
{}\left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right ) = x
\] |
[[_3rd_order, _exact, _nonlinear]] |
✗ |
0.058 |
|
\[
{}3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x}
\] |
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
✗ |
0.061 |
|
\[
{}y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y^{\prime } y = {\mathrm e}^{2 x}
\] |
[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]] |
✗ |
0.062 |
|
\[
{}2 \left (y+1\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0
\] |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
4.378 |
|
\[
{}\left [\begin {array}{c} x^{\prime }-y^{\prime }+y=-{\mathrm e}^{t} \\ x+y^{\prime }-y={\mathrm e}^{2 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.472 |
|
\[
{}\left [\begin {array}{c} x^{\prime }+2 x+y^{\prime }+y=t \\ 5 x+y^{\prime }+3 y=t^{2} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.717 |
|
\[
{}\left [\begin {array}{c} x^{\prime }+x+2 y^{\prime }+7 y={\mathrm e}^{t}+2 \\ -2 x+y^{\prime }+3 y={\mathrm e}^{t}-1 \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.811 |
|
\[
{}\left [\begin {array}{c} x^{\prime }-x+y^{\prime }+3 y={\mathrm e}^{-t}-1 \\ x^{\prime }+2 x+y^{\prime }+3 y=1+{\mathrm e}^{2 t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.206 |
|
\[
{}\left [\begin {array}{c} x^{\prime }-x+y^{\prime }+2 y={\mathrm e}^{t}+1 \\ y^{\prime }+2 y+z^{\prime }+z={\mathrm e}^{t}+2 \\ x^{\prime }-x+z^{\prime }+z=3+{\mathrm e}^{t} \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.517 |
|
\[
{}\left (1-x \right ) y^{\prime } = x^{2}-y
\] |
[_linear] |
✓ |
0.511 |
|
\[
{}x y^{\prime } = 1-x +2 y
\] |
[_linear] |
✓ |
0.530 |
|
\[
{}x y^{\prime } = 1-x +2 y
\] |
[_linear] |
✓ |
1.391 |
|
\[
{}y^{\prime } = 2 x^{2}+3 y
\] |
[[_linear, ‘class A‘]] |
✓ |
0.575 |
|
\[
{}\left (x +1\right ) y^{\prime } = x^{2}-2 x +y
\] |
[_linear] |
✓ |
0.500 |
|
\[
{}y^{\prime \prime }+x y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.464 |
|
\[
{}y^{\prime \prime }+2 x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.513 |
|
\[
{}y^{\prime \prime }-x y^{\prime }+x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.513 |
|