2.2.61 Problems 6001 to 6100

Table 2.135: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

6001

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

2.187

6002

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2.568

6003

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x +y&=a -x +x \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.109

6004

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.100

6005

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=5 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.686

6006

\begin{align*} -5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.456

6007

\begin{align*} -5 y-3 y^{\prime } x +x^{2} y^{\prime \prime }&=x^{2} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5.105

6008

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

4.306

6009

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&={\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

4.151

6010

\begin{align*} x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y&=\ln \left (x +1\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7.424

6011

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.602

6012

\begin{align*} x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y&=x^{2} \left (x^{2}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.891

6013

\begin{align*} \left (-x^{2}+2\right ) y+4 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

62.585

6014

\begin{align*} \left (x^{2}+6\right ) y+4 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

62.302

6015

\begin{align*} 13 y+5 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

4.977

6016

\begin{align*} 16 y-7 y^{\prime } x +x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.255

6017

\begin{align*} \left (a \left (1+a \right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.275

6018

\begin{align*} \operatorname {a2} y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler]]

3.632

6019

\begin{align*} \left (\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.725

6020

\begin{align*} \left (\operatorname {b2} \,x^{2}+\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.345

6021

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\operatorname {a1} x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.922

6022

\begin{align*} \left (c \,x^{3}+b \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.625

6023

\begin{align*} x^{2} \left (\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.082

6024

\begin{align*} \left (b +c \,x^{2 k}\right ) y+a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.253

6025

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.829

6026

\begin{align*} a \left (1+a \right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.852

6027

\begin{align*} a \left (1+a \right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&={\mathrm e}^{x} x^{2+a} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

9.351

6028

\begin{align*} \left (a \left (1+a \right )+b^{2} x^{2}\right ) y-2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

4.133

6029

\begin{align*} \left (b x +a \right ) y+2 a x y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

5.382

6030

\begin{align*} -2 x^{2} y-x^{2} y^{\prime }+x^{2} y^{\prime \prime }&=1+x +2 x^{2} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

97.978

6031

\begin{align*} \left (b \,x^{2}+a \right ) y+x^{2} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.121

6032

\begin{align*} -y-\left (-x^{2}+1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.726

6033

\begin{align*} -\left (1-x \right ) y+x \left (1-x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.047

6034

\begin{align*} x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.030

6035

\begin{align*} x^{2} y^{\prime \prime }-x \left (2+x \right ) y^{\prime }+\left (2+x \right ) y&=x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.668

6036

\begin{align*} -\left (3 x +2\right ) y+x \left (-x +2\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.017

6037

\begin{align*} -y+x \left (x +3\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.411

6038

\begin{align*} 2 \left (x +1\right ) y-2 x \left (x +1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.645

6039

\begin{align*} -2 y+a \,x^{2} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.868

6040

\begin{align*} \left (3 a x +5\right ) y-x \left (a x +5\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.963

6041

\begin{align*} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+x \left (\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.500

6042

\begin{align*} -\left (-x^{2}+2\right ) y+x^{3} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.563

6043

\begin{align*} -\left (x^{2}+1\right ) y+x \left (-x^{2}+1\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.844

6044

\begin{align*} \left (4 x^{4}+2 x^{2}+1\right ) y+4 x^{3} y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.714

6045

\begin{align*} \left (\operatorname {a1} +\operatorname {b1} \,x^{k}+\operatorname {c1} \,x^{2 k}\right ) y+x \left (\operatorname {a0} +\operatorname {b0} \,x^{k}\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.720

6046

\begin{align*} a y+2 x^{2} \cot \left (x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.068

6047

\begin{align*} -\left (a -x \cot \left (x \right )\right ) y+x \left (1+2 x \cot \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

68.470

6048

\begin{align*} a y-2 x^{2} \tan \left (x \right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.066

6049

\begin{align*} -\left (a +x \tan \left (x \right )\right ) y+x \left (1-2 x \tan \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

9.158

6050

\begin{align*} y \left (\operatorname {a2} +\operatorname {b2} \,x^{k}+\operatorname {c2} \,x^{2 k}+\left (-1+\operatorname {a1} +\operatorname {b1} \,x^{k}\right ) f \left (x \right )+f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+x \left (\operatorname {a1} +\operatorname {b1} \,x^{k}+2 f \left (x \right )\right ) y^{\prime }+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

52.428

6051

\begin{align*} -2 y+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

1.435

6052

\begin{align*} a -y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

4.703

6053

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x&=x \\ \end{align*}

[[_2nd_order, _missing_y]]

5.430

6054

\begin{align*} y-y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

16.067

6055

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

34.691

6056

\begin{align*} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

6.163

6057

\begin{align*} -y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

77.839

6058

\begin{align*} -y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=x \left (-x^{2}+1\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

33.730

6059

\begin{align*} 3 y+y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

29.609

6060

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7.887

6061

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.277

6062

\begin{align*} n^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.176

6063

\begin{align*} a^{2} y+y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4.395

6064

\begin{align*} a^{2} y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5.142

6065

\begin{align*} \left (b \,x^{2}+a \right ) y-y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.198

6066

\begin{align*} -2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.655

6067

\begin{align*} a -2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

5.387

6068

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.056

6069

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

11.982

6070

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=\left (-x^{2}+1\right )^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

40.326

6071

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

85.518

6072

\begin{align*} n \left (n +1\right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=\frac {2 \left (-1-n \right ) x \operatorname {LegendreP}\left (n , x\right )+2 \left (n +1\right ) \operatorname {LegendreP}\left (n +1, x\right )}{x^{2}-1} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

82.848

6073

\begin{align*} -p \left (1+p \right ) y+2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.251

6074

\begin{align*} p \left (1+p \right ) y-2 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

82.457

6075

\begin{align*} n \left (n +2\right ) y-3 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

87.742

6076

\begin{align*} -a y-3 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

55.048

6077

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=-2 x +2 \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12.547

6078

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

12.283

6079

\begin{align*} -\left (x^{2}+1\right ) y-4 y^{\prime } x +\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

7.544

6080

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-6 y^{\prime } x -4 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

39.041

6081

\begin{align*} n \left (1+a +b +n \right ) y+\left (-a +b -\left (2+a +b \right ) x \right ) y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

231.201

6082

\begin{align*} p \left (2 k +p \right ) y-\left (1+2 k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

42.997

6083

\begin{align*} p \left (1+2 k +p \right ) y-2 \left (1+k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

50.031

6084

\begin{align*} -\left (k -p \right ) \left (1+k +p \right ) y-2 \left (1+k \right ) x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

38.626

6085

\begin{align*} \left (1-a \right ) a y-2 a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

109.140

6086

\begin{align*} -\left (2-a \right ) y+a x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

18.887

6087

\begin{align*} b y+a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[_Gegenbauer]

117.868

6088

\begin{align*} \left (\operatorname {c0} \,x^{2}+\operatorname {b0} x +\operatorname {a0} \right ) y+a x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

38.193

6089

\begin{align*} c y+\left (b x +a \right ) y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

265.128

6090

\begin{align*} \left (c^{2} x^{2}+b^{2}\right ) y-y^{\prime } x +\left (a^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

65.684

6091

\begin{align*} -12 y-8 y^{\prime } x +\left (a^{2}-x^{2}\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

21.569

6092

\begin{align*} y+2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

40.675

6093

\begin{align*} 2 y-2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

39.043

6094

\begin{align*} 6 y+2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

34.788

6095

\begin{align*} 6 y-2 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[_Jacobi]

35.404

6096

\begin{align*} 2 y+3 y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

18.308

6097

\begin{align*} \left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

17.973

6098

\begin{align*} \left (1-x \right ) x y^{\prime \prime }-3 y^{\prime }+2 y&=x \left (3 x^{3}+1\right ) \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13.294

6099

\begin{align*} 2 y-a y^{\prime }+\left (1-x \right ) x y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

27.459

6100

\begin{align*} x \left (x +1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

22.280