2.2.69 Problems 6801 to 6900

Table 2.139: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6801

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.388

6802

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }=2 x_{1}-9 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.411

6803

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+3 x_{2} \\ x_{2}^{\prime }=5 x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.314

6804

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+3 x_{2} \\ x_{2}^{\prime }=-3 x_{1}+5 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.391

6805

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}+2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.421

6806

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.315

6807

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2}+2 \,{\mathrm e}^{-t} \\ x_{2}^{\prime }=x_{1}-2 x_{2}+3 t \end {array}\right ] \]

system_of_ODEs

0.480

6808

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2} \\ x_{2}^{\prime }=16 x_{1}-5 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.457

6809

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-2 x_{2} \\ x_{2}^{\prime }=3 x_{1}-4 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.424

6810

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }=2 x_{1}-9 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.476

6811

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+3 x_{2} \\ x_{2}^{\prime }=-3 x_{1}+5 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.446

6812

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }=2 x_{1}-9 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.400

6813

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2} \\ x_{2}^{\prime }=4 x_{1}-2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.406

6814

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}-8 \\ x_{2}^{\prime }=x_{1}+x_{2}+3 \end {array}\right ] \]

system_of_ODEs

0.477

6815

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}-8 \\ x_{2}^{\prime }=x_{1}+x_{2}+3 \end {array}\right ] \]
i.c.

system_of_ODEs

0.557

6816

\[ {}y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[_quadrature]

0.316

6817

\[ {}y^{\prime \prime } = x +2 \]

[[_2nd_order, _quadrature]]

1.095

6818

\[ {}y^{\prime \prime \prime } = x^{2} \]

[[_3rd_order, _quadrature]]

0.096

6819

\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \]

[_separable]

1.212

6820

\[ {}y^{\prime }+\cos \left (x \right ) y = \sin \left (x \right ) \cos \left (x \right ) \]

[_linear]

1.506

6821

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.769

6822

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.721

6823

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.526

6824

\[ {}y^{\prime }+5 y = 2 \]

[_quadrature]

0.559

6825

\[ {}y^{\prime \prime } = 3 x +1 \]

[[_2nd_order, _quadrature]]

1.095

6826

\[ {}y^{\prime } = k y \]

[_quadrature]

0.378

6827

\[ {}y^{\prime }-2 y = 1 \]

[_quadrature]

0.371

6828

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

0.891

6829

\[ {}y^{\prime }-2 y = x^{2}+x \]

[[_linear, ‘class A‘]]

0.921

6830

\[ {}3 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

1.070

6831

\[ {}y^{\prime }+3 y = {\mathrm e}^{i x} \]

[[_linear, ‘class A‘]]

0.781

6832

\[ {}y^{\prime }+i y = x \]

[[_linear, ‘class A‘]]

0.864

6833

\[ {}L y^{\prime }+R y = E \]

[_quadrature]

0.373

6834

\[ {}L y^{\prime }+R y = E \sin \left (\omega x \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.474

6835

\[ {}L y^{\prime }+R y = E \,{\mathrm e}^{i \omega x} \]
i.c.

[[_linear, ‘class A‘]]

1.108

6836

\[ {}y^{\prime }+a y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

1.121

6837

\[ {}y^{\prime }+2 y x = x \]

[_separable]

0.984

6838

\[ {}y^{\prime } x +y = 3 x^{3}-1 \]

[_linear]

0.911

6839

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

[_separable]

1.146

6840

\[ {}y^{\prime }-\tan \left (x \right ) y = {\mathrm e}^{\sin \left (x \right )} \]

[_linear]

1.490

6841

\[ {}y^{\prime }+2 y x = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

2.068

6842

\[ {}y^{\prime }+\cos \left (x \right ) y = {\mathrm e}^{-\sin \left (x \right )} \]
i.c.

[_linear]

1.592

6843

\[ {}x^{2} y^{\prime }+2 y x = 1 \]

[_linear]

1.069

6844

\[ {}y^{\prime }+2 y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

1.094

6845

\[ {}y^{\prime } = 1+y \]
i.c.

[_quadrature]

0.394

6846

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

0.566

6847

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

0.552

6848

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

1.937

6849

\[ {}3 y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1.727

6850

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

1.720

6851

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

1.202

6852

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.905

6853

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.141

6854

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

[[_2nd_order, _missing_x]]

0.721

6855

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.970

6856

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.943

6857

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.789

6858

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.520

6859

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.490

6860

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.549

6861

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.972

6862

\[ {}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.588

6863

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.816

6864

\[ {}y^{\prime \prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.414

6865

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.297

6866

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.760

6867

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.776

6868

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.643

6869

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.141

6870

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.341

6871

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.081

6872

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.217

6873

\[ {}4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.896

6874

\[ {}6 y^{\prime \prime }+5 y^{\prime }-6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

0.973

6875

\[ {}y^{\prime \prime }+\omega ^{2} y = A \cos \left (\omega x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.556

6876

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

0.067

6877

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.077

6878

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.062

6879

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0 \]

[[_3rd_order, _missing_x]]

0.082

6880

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.081

6881

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

0.068

6882

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.063

6883

\[ {}y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0 \]

[[_3rd_order, _missing_x]]

0.079

6884

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.114

6885

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.088

6886

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.659

6887

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.733

6888

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.067

6889

\[ {}y^{\left (5\right )}+2 y = 0 \]

[[_high_order, _missing_x]]

0.145

6890

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.063

6891

\[ {}y^{\prime \prime \prime }+y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.134

6892

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0 \]

[[_3rd_order, _missing_x]]

0.081

6893

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.597

6894

\[ {}y^{\prime \prime \prime \prime }-k^{4} y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.157

6895

\[ {}y^{\prime \prime \prime }-y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.108

6896

\[ {}y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x} \]

[[_3rd_order, _with_linear_symmetries]]

0.470

6897

\[ {}y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.135

6898

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

[[_high_order, _with_linear_symmetries]]

0.121

6899

\[ {}y^{\prime \prime \prime \prime }-y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.490

6900

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.003