2.2.69 Problems 6801 to 6900

Table 2.139: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6801

\[ {}y^{\prime \prime }+x^{2} y = x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.507

6802

\[ {}2 \left (x^{3}+x^{2}\right ) y^{\prime \prime }-\left (-3 x^{2}+x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.849

6803

\[ {}4 x y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.818

6804

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.816

6805

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

[_Lienard]

0.674

6806

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.760

6807

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.184

6808

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

0.753

6809

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.969

6810

\[ {}2 x y^{\prime \prime }+y^{\prime }-y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

1.030

6811

\[ {}2 x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.853

6812

\[ {}x^{3} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.807

6813

\[ {}z^{\prime \prime }+t z^{\prime }+\left (t^{2}-\frac {1}{9}\right ) z = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.587

6814

\[ {}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.021

6815

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-\left (2 x +1\right ) \left (-y+y^{\prime } x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.871

6816

\[ {}x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.048

6817

\[ {}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.048

6818

\[ {}2 \left (2-x \right ) x^{2} y^{\prime \prime }-\left (-x +4\right ) x y^{\prime }+\left (3-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.036

6819

\[ {}\left (1-x \right ) x^{2} y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.456

6820

\[ {}x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.772

6821

\[ {}x^{2} y^{\prime \prime }+4 \left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.051

6822

\[ {}x y^{\prime \prime }+\left (x^{3}+1\right ) y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.757

6823

\[ {}\left (x -1\right ) \left (x -2\right ) y^{\prime \prime }+\left (4 x -6\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

0.670

6824

\[ {}y^{\prime \prime }-2 y^{\prime } x +8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.513

6825

\[ {}y^{\prime \prime }-2 y^{\prime } x +8 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.526

6826

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y = 0 \]
i.c.

[_Gegenbauer]

0.609

6827

\[ {}y^{\prime \prime } = \left (x -1\right ) y \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.509

6828

\[ {}x \left (x +2\right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.806

6829

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

1.116

6830

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{x}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.691

6831

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.240

6832

\[ {}2 x y^{\prime \prime }-y^{\prime }+x^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.729

6833

\[ {}\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }-y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.061

6834

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.469

6835

\[ {}x \left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.881

6836

\[ {}x y^{\prime \prime }+\left (\frac {1}{2}-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.835

6837

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.746

6838

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.704

6839

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.822

6840

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.493

6841

\[ {}y^{\prime }+x y = \cos \left (x \right ) \]

[_linear]

0.725

6842

\[ {}y^{\prime }+x y = \frac {1}{x^{3}} \]

[_linear]

1.379

6843

\[ {}x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.105

6844

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.302

6845

\[ {}y^{\prime }-\frac {y}{x} = \cos \left (x \right ) \]

[_linear]

0.414

6846

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.423

6847

\[ {}y^{\prime \prime }+4 x y = 0 \]

[[_Emden, _Fowler]]

0.480

6848

\[ {}y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

0.599

6849

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.523

6850

\[ {}y^{\prime }-x y = 0 \]

[_separable]

0.597

6851

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.689

6852

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.469

6853

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.601

6854

\[ {}x y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.635

6855

\[ {}y^{\prime \prime }+2 x^{3} y = 0 \]

[[_Emden, _Fowler]]

0.480

6856

\[ {}y^{\prime \prime }-x y = \frac {1}{1-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.602

6857

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

0.721

6858

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.806

6859

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

0.725

6860

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-x y = 0 \]

[[_Emden, _Fowler]]

0.676

6861

\[ {}2 x y^{\prime \prime }+y^{\prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.774

6862

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

0.745

6863

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.220

6864

\[ {}x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.171

6865

\[ {}x y^{\prime \prime }+x^{3} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.220

6866

\[ {}x y^{\prime \prime }+y^{\prime } x -y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.355

6867

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _missing_x]]

0.479

6868

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.401

6869

\[ {}x^{3} y^{\prime \prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.125

6870

\[ {}x y^{\prime \prime }+x^{5} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.256

6871

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.382

6872

\[ {}\cos \left (x \right ) y^{\prime \prime }-y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.919

6873

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

[[_Emden, _Fowler]]

0.730

6874

\[ {}x^{2} y^{\prime \prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.319

6875

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

0.714

6876

\[ {}\left (1-x \right ) y^{\prime \prime }-4 y^{\prime } x +5 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.968

6877

\[ {}x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y = 0 \]

[NONE]

0.054

6878

\[ {}t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.064

6879

\[ {}u^{\prime \prime }+u^{\prime }+u = \cos \left (r +u\right ) \]

[NONE]

0.319

6880

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

[[_2nd_order, _missing_x]]

2.420

6881

\[ {}R^{\prime \prime } = -\frac {k}{R^{2}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

71.584

6882

\[ {}x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

1.841

6883

\[ {}\sin \left (y^{\prime }\right ) = x +y \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.407

6884

\[ {}\sin \left (x^{\prime }\right )+y^{3} x = \sin \left (y \right ) \]

[‘y=_G(x,y’)‘]

24.353

6885

\[ {}y^{2}-1+y^{\prime } x = 0 \]

[_separable]

1.874

6886

\[ {}2 y^{\prime }+y = 0 \]

[_quadrature]

1.373

6887

\[ {}y^{\prime }+20 y = 24 \]

[_quadrature]

1.312

6888

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

2.087

6889

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.227

6890

\[ {}\left (y-x \right ) y^{\prime } = y-x \]

[_quadrature]

0.778

6891

\[ {}y^{\prime } = 25+y^{2} \]

[_quadrature]

1.232

6892

\[ {}y^{\prime } = 2 x y^{2} \]

[_separable]

1.975

6893

\[ {}2 y^{\prime } = y^{3} \cos \left (x \right ) \]

[_separable]

2.771

6894

\[ {}x^{\prime } = \left (x-1\right ) \left (1-2 x\right ) \]

[_quadrature]

1.616

6895

\[ {}2 x y+\left (x^{2}-y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.204

6896

\[ {}p^{\prime } = p \left (1-p\right ) \]

[_quadrature]

1.984

6897

\[ {}y^{\prime }+4 x y = 8 x^{3} \]

[_linear]

1.575

6898

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.212

6899

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 12 x^{2} \]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

0.272

6900

\[ {}y^{\prime } x -3 x y = 1 \]

[[_linear, ‘class A‘]]

1.107