2.2.70 Problems 6901 to 7000

Table 2.141: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

6901

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.266

6902

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.702

6903

\[ {}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.065

6904

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.612

6905

\[ {}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.591

6906

\[ {}y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.523

6907

\[ {}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.250

6908

\[ {}y^{\prime \prime \prime } = x^{2}+{\mathrm e}^{-x} \sin \left (x \right ) \]

[[_3rd_order, _quadrature]]

0.533

6909

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.130

6910

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.906

6911

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.674

6912

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.211

6913

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 0 \]

[[_Emden, _Fowler]]

0.293

6914

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

0.303

6915

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.303

6916

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

0.323

6917

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

0.339

6918

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.316

6919

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.122

6920

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.287

6921

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

0.290

6922

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.471

6923

\[ {}y^{\prime \prime }-y^{\prime } x +y = 0 \]

[_Hermite]

0.441

6924

\[ {}y^{\prime \prime }+3 x^{2} y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.484

6925

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.437

6926

\[ {}y^{\prime \prime }+x^{3} y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.530

6927

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.284

6928

\[ {}y^{\prime \prime }+\left (x -1\right )^{2} y^{\prime }-\left (x -1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.509

6929

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.504

6930

\[ {}y^{\prime \prime }+y \,{\mathrm e}^{x} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.606

6931

\[ {}y^{\prime \prime \prime }-y x = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.050

6932

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y = 0 \]

[_Gegenbauer]

0.706

6933

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.492

6934

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 \alpha y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.437

6935

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.806

6936

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

1.006

6937

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.932

6938

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.424

6939

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.118

6940

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

1.810

6941

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

1.648

6942

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

[[_Emden, _Fowler]]

1.757

6943

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y = x \]

[[_2nd_order, _with_linear_symmetries]]

35.511

6944

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.003

6945

\[ {}3 x^{2} y^{\prime \prime }+x^{6} y^{\prime }+2 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.328

6946

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.147

6947

\[ {}x y^{\prime \prime }+4 y = 0 \]

[[_Emden, _Fowler]]

1.181

6948

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

0.864

6949

\[ {}\left (x^{2}+x -2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.346

6950

\[ {}x^{2} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.889

6951

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.951

6952

\[ {}4 x^{2} y^{\prime \prime }+\left (4 x^{4}-5 x \right ) y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.074

6953

\[ {}x^{2} y^{\prime \prime }+\left (-3 x^{2}+x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.964

6954

\[ {}3 x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y x = 0 \]

[[_Emden, _Fowler]]

1.008

6955

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y = 0 \]

[_Lienard]

0.684

6956

\[ {}x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.013

6957

\[ {}2 x^{2} y^{\prime \prime }+\left (x^{2}+5 x \right ) y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.336

6958

\[ {}4 x^{2} y^{\prime \prime }-4 x \,{\mathrm e}^{x} y^{\prime }+3 \cos \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.926

6959

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+3 \left (x^{2}+x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.086

6960

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.935

6961

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.041

6962

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (-x^{3}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.898

6963

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.007

6964

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

1.178

6965

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (4 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.354

6966

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

0.597

6967

\[ {}y^{\prime } = x^{2} y \]

[_separable]

1.018

6968

\[ {}y y^{\prime } = x \]

[_separable]

2.687

6969

\[ {}y^{\prime } = \frac {x^{2}+x}{y-y^{2}} \]

[_separable]

1.223

6970

\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}} \]

[_separable]

1.373

6971

\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \]

[_separable]

1.986

6972

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

0.409

6973

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

0.599

6974

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

0.513

6975

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.371

6976

\[ {}y^{\prime } = \frac {y^{2}}{y x +x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.281

6977

\[ {}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

1.961

6978

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

28.872

6979

\[ {}y^{\prime } = \frac {x -y+2}{x +y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.444

6980

\[ {}y^{\prime } = \frac {2 x +3 y+1}{x -2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.877

6981

\[ {}y^{\prime } = \frac {x +y+1}{2 x +2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.237

6982

\[ {}y^{\prime } = \frac {\left (x +y-1\right )^{2}}{2 \left (x +2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

2.071

6983

\[ {}2 y x +\left (x^{2}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.258

6984

\[ {}x^{2}+y x +\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

0.151

6985

\[ {}{\mathrm e}^{x}+{\mathrm e}^{y} \left (1+y\right ) y^{\prime } = 0 \]

[_separable]

0.252

6986

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}-\sin \left (x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

0.386

6987

\[ {}x^{2} y^{3}-x^{3} y^{2} y^{\prime } = 0 \]

[_separable]

0.560

6988

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.293

6989

\[ {}2 y \,{\mathrm e}^{2 x}+2 x \cos \left (y\right )+\left ({\mathrm e}^{2 x}-x^{2} \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

0.273

6990

\[ {}3 x^{2} \ln \left (x \right )+x^{2}+y+y^{\prime } x = 0 \]

[_linear]

0.182

6991

\[ {}2 y^{3}+2+3 x y^{2} y^{\prime } = 0 \]

[_separable]

0.495

6992

\[ {}\cos \left (x \right ) \cos \left (y\right )-2 \sin \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

0.345

6993

\[ {}5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.315

6994

\[ {}{\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_quadrature]

0.286

6995

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

1.471

6996

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

0.825

6997

\[ {}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.181

6998

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.638

6999

\[ {}y^{\prime \prime } = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.630

7000

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

[[_2nd_order, _missing_y]]

1.095