# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime }+4 y = \cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.266 |
|
\[
{}y^{\prime \prime }+4 y = \sin \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.702 |
|
\[
{}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.065 |
|
\[
{}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.612 |
|
\[
{}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
2.591 |
|
\[
{}y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (2 x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.523 |
|
\[
{}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.250 |
|
\[
{}y^{\prime \prime \prime } = x^{2}+{\mathrm e}^{-x} \sin \left (x \right )
\] |
[[_3rd_order, _quadrature]] |
✓ |
0.533 |
|
\[
{}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x}
\] |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
0.130 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.906 |
|
\[
{}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.674 |
|
\[
{}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
1.211 |
|
\[
{}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.293 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.303 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.303 |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0
\] |
[_Laguerre] |
✓ |
0.323 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.339 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.316 |
|
\[
{}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.122 |
|
\[
{}x^{2} y^{\prime \prime }-2 y = 0
\] |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
0.287 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.290 |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.471 |
|
\[
{}y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[_Hermite] |
✓ |
0.441 |
|
\[
{}y^{\prime \prime }+3 x^{2} y^{\prime }-y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.484 |
|
\[
{}y^{\prime \prime }-x^{2} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.437 |
|
\[
{}y^{\prime \prime }+x^{3} y^{\prime }+x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.530 |
|
\[
{}y^{\prime \prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.284 |
|
\[
{}y^{\prime \prime }+\left (x -1\right )^{2} y^{\prime }-\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.509 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.504 |
|
\[
{}y^{\prime \prime }+y \,{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.606 |
|
\[
{}y^{\prime \prime \prime }-y x = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
0.050 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y = 0
\] |
[_Gegenbauer] |
✓ |
0.706 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y = 0
\] |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.492 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } x +2 \alpha y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.437 |
|
\[
{}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.806 |
|
\[
{}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.006 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0
\] |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.932 |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{2}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.424 |
|
\[
{}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_3rd_order, _exact, _linear, _homogeneous]] |
✓ |
0.118 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.810 |
|
\[
{}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.648 |
|
\[
{}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.757 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
35.511 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.003 |
|
\[
{}3 x^{2} y^{\prime \prime }+x^{6} y^{\prime }+2 y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.328 |
|
\[
{}x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.147 |
|
\[
{}x y^{\prime \prime }+4 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.181 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.864 |
|
\[
{}\left (x^{2}+x -2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.346 |
|
\[
{}x^{2} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.889 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.951 |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (4 x^{4}-5 x \right ) y^{\prime }+\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.074 |
|
\[
{}x^{2} y^{\prime \prime }+\left (-3 x^{2}+x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.964 |
|
\[
{}3 x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.008 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y = 0
\] |
[_Lienard] |
✓ |
0.684 |
|
\[
{}x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }+y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
1.013 |
|
\[
{}2 x^{2} y^{\prime \prime }+\left (x^{2}+5 x \right ) y^{\prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.336 |
|
\[
{}4 x^{2} y^{\prime \prime }-4 x \,{\mathrm e}^{x} y^{\prime }+3 \cos \left (x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.926 |
|
\[
{}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+3 \left (x^{2}+x \right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.086 |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.935 |
|
\[
{}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.041 |
|
\[
{}x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (-x^{3}+3\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.898 |
|
\[
{}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.007 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0
\] |
[_Bessel] |
✓ |
1.178 |
|
\[
{}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (4 x -2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
1.354 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.597 |
|
\[
{}y^{\prime } = x^{2} y
\] |
[_separable] |
✓ |
1.018 |
|
\[
{}y y^{\prime } = x
\] |
[_separable] |
✓ |
2.687 |
|
\[
{}y^{\prime } = \frac {x^{2}+x}{y-y^{2}}
\] |
[_separable] |
✓ |
1.223 |
|
\[
{}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}}
\] |
[_separable] |
✓ |
1.373 |
|
\[
{}y^{\prime } = x^{2} y^{2}-4 x^{2}
\] |
[_separable] |
✓ |
1.986 |
|
\[
{}y^{\prime } = y^{2}
\] |
[_quadrature] |
✓ |
0.409 |
|
\[
{}y^{\prime } = 2 \sqrt {y}
\] |
[_quadrature] |
✓ |
0.599 |
|
\[
{}y^{\prime } = 2 \sqrt {y}
\] |
[_quadrature] |
✓ |
0.513 |
|
\[
{}y^{\prime } = \frac {x +y}{x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.371 |
|
\[
{}y^{\prime } = \frac {y^{2}}{y x +x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
6.281 |
|
\[
{}y^{\prime } = \frac {x^{2}+y x +y^{2}}{x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
1.961 |
|
\[
{}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
28.872 |
|
\[
{}y^{\prime } = \frac {x -y+2}{x +y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.444 |
|
\[
{}y^{\prime } = \frac {2 x +3 y+1}{x -2 y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.877 |
|
\[
{}y^{\prime } = \frac {x +y+1}{2 x +2 y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.237 |
|
\[
{}y^{\prime } = \frac {\left (x +y-1\right )^{2}}{2 \left (x +2\right )^{2}}
\] |
[[_homogeneous, ‘class C‘], _rational, _Riccati] |
✓ |
2.071 |
|
\[
{}2 y x +\left (x^{2}+3 y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
0.258 |
|
\[
{}x^{2}+y x +\left (x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
0.151 |
|
\[
{}{\mathrm e}^{x}+{\mathrm e}^{y} \left (1+y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
0.252 |
|
\[
{}\cos \left (x \right ) \cos \left (y\right )^{2}-\sin \left (x \right ) \sin \left (2 y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
0.386 |
|
\[
{}x^{2} y^{3}-x^{3} y^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
0.560 |
|
\[
{}x +y+\left (x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
0.293 |
|
\[
{}2 y \,{\mathrm e}^{2 x}+2 x \cos \left (y\right )+\left ({\mathrm e}^{2 x}-x^{2} \sin \left (y\right )\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
0.273 |
|
\[
{}3 x^{2} \ln \left (x \right )+x^{2}+y+y^{\prime } x = 0
\] |
[_linear] |
✓ |
0.182 |
|
\[
{}2 y^{3}+2+3 x y^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
0.495 |
|
\[
{}\cos \left (x \right ) \cos \left (y\right )-2 \sin \left (x \right ) \sin \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
0.345 |
|
\[
{}5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
0.315 |
|
\[
{}{\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
0.286 |
|
\[
{}y^{\prime \prime }+y^{\prime } = 1
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.471 |
|
\[
{}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x}
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.825 |
|
\[
{}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.181 |
|
\[
{}y^{\prime \prime }+k^{2} y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.638 |
|
\[
{}y^{\prime \prime } = y y^{\prime }
\] |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.630 |
|
\[
{}x y^{\prime \prime }-2 y^{\prime } = x^{3}
\] |
[[_2nd_order, _missing_y]] |
✓ |
1.095 |
|