2.2.71 Problems 7001 to 7100

Table 2.143: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7001

\[ {}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.944

7002

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (x^{2}-1\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.888

7003

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+16 x \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.691

7004

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-6\right ) y = 0 \]

[_Bessel]

0.839

7005

\[ {}x y^{\prime \prime }+5 y^{\prime }+x y = 0 \]

[_Lienard]

1.152

7006

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (36 x^{4}-16\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.787

7007

\[ {}y^{\prime \prime }+x y = 0 \]

[[_Emden, _Fowler]]

0.462

7008

\[ {}4 x y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.759

7009

\[ {}x y^{\prime \prime }+y^{\prime }+36 y = 0 \]

[[_Emden, _Fowler]]

0.740

7010

\[ {}y^{\prime \prime }+k^{2} x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.520

7011

\[ {}y^{\prime \prime }+k^{2} x^{4} y = 0 \]

[[_Emden, _Fowler]]

0.522

7012

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

[_Lienard]

1.180

7013

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.524

7014

\[ {}x y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.802

7015

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-\left (x -1\right ) y^{\prime }-35 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.641

7016

\[ {}16 \left (x +1\right )^{2} y^{\prime \prime }+3 y = 0 \]

[[_Emden, _Fowler]]

0.618

7017

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0 \]

[_Bessel]

0.905

7018

\[ {}x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.908

7019

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

0.881

7020

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

0.728

7021

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

[[_Emden, _Fowler]]

1.138

7022

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.711

7023

\[ {}y^{\prime }+\frac {26 y}{5} = \frac {97 \sin \left (2 t \right )}{5} \]
i.c.

[[_linear, ‘class A‘]]

0.379

7024

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

0.278

7025

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.275

7026

\[ {}y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.337

7027

\[ {}y^{\prime \prime }-\frac {y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.246

7028

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.389

7029

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.300

7030

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.258

7031

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.271

7032

\[ {}y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.224

7033

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.285

7034

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.423

7035

\[ {}y^{\prime }-6 y = 0 \]
i.c.

[_quadrature]

0.291

7036

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.514

7037

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.352

7038

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.224

7039

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.283

7040

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.236

7041

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0<t <\pi \\ 0 & \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.695

7042

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.119

7043

\[ {}y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.088

7044

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.717

7045

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.775

7046

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.780

7047

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1.321

7048

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.508

7049

\[ {}y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.539

7050

\[ {}y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.526

7051

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.801

7052

\[ {}4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.904

7053

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (t -1\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.755

7054

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.224

7055

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.938

7056

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right )+\delta \left (t -2\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.862

7057

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.648

7058

\[ {}y^{\prime } = \frac {x^{2}}{y} \]

[_separable]

1.789

7059

\[ {}y^{\prime } = \frac {x^{2}}{y \left (x^{3}+1\right )} \]

[_separable]

1.256

7060

\[ {}y^{\prime } = y \sin \left (x \right ) \]

[_separable]

1.391

7061

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

[_separable]

2.099

7062

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

[_separable]

1.030

7063

\[ {}x y y^{\prime } = \sqrt {1+y^{2}} \]

[_separable]

5.875

7064

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y^{2} = 0 \]
i.c.

[_separable]

2.179

7065

\[ {}y^{\prime } = 3 y^{{2}/{3}} \]
i.c.

[_quadrature]

1.593

7066

\[ {}x y^{\prime }+y = y^{2} \]
i.c.

[_separable]

2.047

7067

\[ {}2 x^{2} y y^{\prime }+y^{2} = 2 \]

[_separable]

2.132

7068

\[ {}y^{\prime }-x y^{2} = 2 x y \]

[_separable]

1.836

7069

\[ {}\left (1+z^{\prime }\right ) {\mathrm e}^{-z} = 1 \]

[_quadrature]

1.082

7070

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]
i.c.

[_separable]

2.139

7071

\[ {}{\mathrm e}^{x}-\left (1+{\mathrm e}^{x}\right ) y y^{\prime } = 0 \]
i.c.

[_separable]

3.041

7072

\[ {}\frac {y}{x -1}+\frac {x y^{\prime }}{y+1} = 0 \]

[_separable]

2.530

7073

\[ {}x +2 x^{3}+\left (y+2 y^{3}\right ) y^{\prime } = 0 \]

[_separable]

1.896

7074

\[ {}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0 \]

[_separable]

15.310

7075

\[ {}\frac {1}{\sqrt {-x^{2}+1}}+\frac {y^{\prime }}{\sqrt {1-y^{2}}} = 0 \]

[_separable]

19.743

7076

\[ {}2 x \sqrt {1-y^{2}}+y^{\prime } y = 0 \]

[_separable]

2.051

7077

\[ {}y^{\prime } = \left (y-1\right ) \left (x +1\right ) \]

[_separable]

1.147

7078

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

1.489

7079

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

[_separable]

10.286

7080

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

[_separable]

3.643

7081

\[ {}z^{\prime } = 10^{x +z} \]

[_separable]

2.005

7082

\[ {}x^{\prime }+t = 1 \]

[_quadrature]

0.249

7083

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.398

7084

\[ {}y^{\prime }-y = 2 x -3 \]

[[_linear, ‘class A‘]]

0.969

7085

\[ {}\left (x +2 y\right ) y^{\prime } = 1 \]
i.c.

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

2.102

7086

\[ {}y^{\prime }+y = 2 x +1 \]

[[_linear, ‘class A‘]]

0.946

7087

\[ {}y^{\prime } = \cos \left (x -y-1\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.579

7088

\[ {}y^{\prime }+\sin \left (x +y\right )^{2} = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

5.667

7089

\[ {}y^{\prime } = 2 \sqrt {2 x +y+1} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.953

7090

\[ {}y^{\prime } = \left (x +y+1\right )^{2} \]

[[_homogeneous, ‘class C‘], _Riccati]

4.171

7091

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1.566

7092

\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (y+1\right ) y^{\prime } = 0 \]

[_separable]

2.029

7093

\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.644

7094

\[ {}y-2 x y+x^{2} y^{\prime } = 0 \]

[_separable]

1.428

7095

\[ {}2 x y^{\prime } = y \left (2 x^{2}-y^{2}\right ) \]

[_rational, _Bernoulli]

1.334

7096

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.118

7097

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime } = 2 x y \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.756

7098

\[ {}-y+x y^{\prime } = x \tan \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.849

7099

\[ {}x y^{\prime } = y-x \,{\mathrm e}^{\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

7.934

7100

\[ {}-y+x y^{\prime } = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.217