2.2.71 Problems 7001 to 7100

Table 2.143: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7001

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.700

7002

\[ {}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

2.915

7003

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

206.677

7004

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

99.549

7005

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1} \\ y_{2}^{\prime }=y_{1}+y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.399

7006

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2} \\ y_{2}^{\prime }=6 y_{1}+y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.515

7007

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+y_{2} \\ y_{2}^{\prime }=y_{1}+y_{2}+{\mathrm e}^{3 x} \end {array}\right ] \]
i.c.

system_of_ODEs

0.526

7008

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}+x y_{3} \\ y_{2}^{\prime }=y_{2}+x^{3} y_{3} \\ y_{3}^{\prime }=2 x y_{1}-y_{2}+{\mathrm e}^{x} y_{3} \end {array}\right ] \]

system_of_ODEs

0.053

7009

\[ {}y^{\prime } = 2 x \]

[_quadrature]

0.224

7010

\[ {}y^{\prime } x = 2 y \]

[_separable]

1.406

7011

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

1.181

7012

\[ {}y^{\prime } = k y \]

[_quadrature]

0.383

7013

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.764

7014

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

1.978

7015

\[ {}y^{\prime } x +y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.236

7016

\[ {}y^{\prime } x = y+x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.796

7017

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.604

7018

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.408

7019

\[ {}y^{\prime } x +y = x^{4} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

1.925

7020

\[ {}y^{\prime } = \frac {y^{2}}{y x -x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.919

7021

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

[[_1st_order, _with_linear_symmetries]]

1.492

7022

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

0.457

7023

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

0.266

7024

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

0.272

7025

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

0.312

7026

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

0.330

7027

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

0.381

7028

\[ {}y^{\prime } x = 1 \]

[_quadrature]

0.279

7029

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

0.273

7030

\[ {}\sin \left (x \right ) y^{\prime } = 1 \]

[_quadrature]

0.428

7031

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

0.579

7032

\[ {}\left (x^{2}-3 x +2\right ) y^{\prime } = x \]

[_quadrature]

0.366

7033

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

0.430

7034

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

0.487

7035

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

0.440

7036

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

0.443

7037

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

0.549

7038

\[ {}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]
i.c.

[_quadrature]

0.961

7039

\[ {}y^{\prime } = 2 y x +1 \]

[_linear]

0.921

7040

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.804

7041

\[ {}y^{\prime } = \frac {2 x y^{2}}{1-x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.419

7042

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_3rd_order, _missing_x]]

0.071

7043

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

[_separable]

4.743

7044

\[ {}y^{\prime } = 4 y x \]

[_separable]

1.132

7045

\[ {}y^{\prime }+\tan \left (x \right ) y = 0 \]

[_separable]

1.320

7046

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

[_separable]

1.730

7047

\[ {}y \ln \left (y\right )-y^{\prime } x = 0 \]

[_separable]

1.490

7048

\[ {}y^{\prime } x = \left (-4 x^{2}+1\right ) \tan \left (y\right ) \]

[_separable]

1.893

7049

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

[_separable]

1.260

7050

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

[_separable]

1.261

7051

\[ {}x y y^{\prime } = -1+y \]

[_separable]

1.249

7052

\[ {}x y^{2}-x^{2} y^{\prime } = 0 \]

[_separable]

1.179

7053

\[ {}y y^{\prime } = x +1 \]
i.c.

[_separable]

2.569

7054

\[ {}x^{2} y^{\prime } = y \]
i.c.

[_separable]

1.420

7055

\[ {}\frac {y^{\prime }}{x^{2}+1} = \frac {x}{y} \]
i.c.

[_separable]

1.090

7056

\[ {}y^{2} y^{\prime } = x +2 \]
i.c.

[_separable]

1.290

7057

\[ {}y^{\prime } = x^{2} y^{2} \]
i.c.

[_separable]

1.909

7058

\[ {}y^{\prime } \left (1+y\right ) = -x^{2}+1 \]
i.c.

[_separable]

1.153

7059

\[ {}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \]

[[_2nd_order, _missing_y]]

0.564

7060

\[ {}y^{\prime \prime } y^{\prime } = x \left (x +1\right ) \]

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1.365

7061

\[ {}y^{\prime }-y x = 0 \]

[_separable]

0.135

7062

\[ {}y^{\prime }+y x = x \]

[_separable]

0.338

7063

\[ {}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

[_linear]

0.167

7064

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

[[_linear, ‘class A‘]]

0.166

7065

\[ {}2 y-x^{3} = y^{\prime } x \]

[_linear]

0.132

7066

\[ {}y^{\prime }+2 y x = 0 \]

[_separable]

0.133

7067

\[ {}y^{\prime } x -3 y = x^{4} \]

[_linear]

0.143

7068

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 y x = \cot \left (x \right ) \]

[_linear]

0.157

7069

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

[_linear]

0.185

7070

\[ {}y-x +x y \cot \left (x \right )+y^{\prime } x = 0 \]

[_linear]

0.195

7071

\[ {}y^{\prime }-y x = 0 \]
i.c.

[_separable]

0.253

7072

\[ {}y^{\prime }-2 y x = 6 x \,{\mathrm e}^{x^{2}} \]
i.c.

[_linear]

0.309

7073

\[ {}x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \]
i.c.

[_linear]

0.212

7074

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]
i.c.

[_linear]

0.237

7075

\[ {}y^{\prime }+4 y = {\mathrm e}^{-x} \]
i.c.

[[_linear, ‘class A‘]]

0.273

7076

\[ {}x^{2} y^{\prime }+y x = 2 x \]
i.c.

[_separable]

0.255

7077

\[ {}y^{\prime } x +y = x^{4} y^{3} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.252

7078

\[ {}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

[_Bernoulli]

66.912

7079

\[ {}y^{\prime } x +y = x y^{2} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.270

7080

\[ {}y^{\prime }+y x = x y^{4} \]

[_separable]

2.256

7081

\[ {}\left ({\mathrm e}^{y}-2 y x \right ) y^{\prime } = y^{2} \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.085

7082

\[ {}y-y^{\prime } x = y^{\prime } y^{2} {\mathrm e}^{y} \]

[[_1st_order, _with_linear_symmetries]]

1.075

7083

\[ {}y^{\prime } x +2 = x^{3} \left (-1+y\right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2.216

7084

\[ {}y^{\prime } x = 2 x^{2} y+y \ln \left (x \right ) \]

[_separable]

1.648

7085

\[ {}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

[_linear]

3.499

7086

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.260

7087

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

72.365

7088

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.136

7089

\[ {}2 y^{2}-4 x +5 = \left (4-2 y+4 y x \right ) y^{\prime } \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.920

7090

\[ {}y+y \cos \left (y x \right )+\left (x +x \cos \left (y x \right )\right ) y^{\prime } = 0 \]

[_separable]

1.416

7091

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.947

7092

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

[_exact]

54.359

7093

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

[_separable]

0.242

7094

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

1.295

7095

\[ {}2 x y^{3}+\cos \left (x \right ) y+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

81.296

7096

\[ {}\frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} = 1 \]

[_exact, _rational, _Riccati]

1.254

7097

\[ {}2 x y^{4}+\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

2.814

7098

\[ {}\frac {y^{\prime } x +y}{1-x^{2} y^{2}}+x = 0 \]

[_exact, _rational, _Riccati]

1.573

7099

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.670

7100

\[ {}x \ln \left (y\right )+y x +\left (y \ln \left (x \right )+y x \right ) y^{\prime } = 0 \]

[_separable]

1.833