2.2.64 Problems 6301 to 6400

Table 2.141: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

6301

\begin{align*} y^{\prime \prime }&=a +b x +c y^{2} \\ \end{align*}

[NONE]

0.245

6302

\begin{align*} y^{\prime \prime }&=2 y^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.686

6303

\begin{align*} y^{\prime \prime }&=a +b y+2 y^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.441

6304

\begin{align*} y^{\prime \prime }&=a +y x +2 y^{3} \\ \end{align*}

[[_Painleve, ‘2nd‘]]

0.246

6305

\begin{align*} y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y+2 y^{3} \\ \end{align*}

[NONE]

0.306

6306

\begin{align*} y^{\prime \prime }&=a -2 a b x y+2 b^{2} y^{3} \\ \end{align*}

[NONE]

0.265

6307

\begin{align*} y^{\prime \prime }&=\operatorname {a0} +\operatorname {a2} y+\operatorname {a1} x y+\operatorname {a3} y^{3} \\ \end{align*}

[NONE]

0.286

6308

\begin{align*} y^{\prime \prime }&=\operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.778

6309

\begin{align*} a \,x^{r} y^{s}+y^{\prime \prime }&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.241

6310

\begin{align*} a \sin \left (y\right )+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

63.576

6311

\begin{align*} a \,{\mathrm e}^{y}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.378

6312

\begin{align*} y^{\prime \prime }&=f \left (y\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.756

6313

\begin{align*} y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+3 f \left (x \right ) y^{\prime }+y^{\prime \prime }&=2 y^{3} \\ \end{align*}

[NONE]

0.481

6314

\begin{align*} y y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.584

6315

\begin{align*} y y^{\prime }+y^{\prime \prime }&=y^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

19.944

6316

\begin{align*} a y+y y^{\prime }+y^{\prime \prime }&=y^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

21.928

6317

\begin{align*} y y^{\prime }+y^{\prime \prime }&=-12 f \left (x \right ) y+y^{3}+12 f^{\prime }\left (x \right ) \\ \end{align*}

[NONE]

0.434

6318

\begin{align*} 2 a^{2} y+a y^{2}+\left (3 a +y\right ) y^{\prime }+y^{\prime \prime }&=y^{3} \\ \end{align*}

[[_2nd_order, _missing_x]]

13.765

6319

\begin{align*} y^{\prime \prime }&=f \left (x \right ) y^{2}+y^{3}+y \left (-2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+\left (3 f \left (x \right )-y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.528

6320

\begin{align*} y^{\prime \prime }&=\operatorname {f2} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f1} \left (x \right ) y^{2}+y^{3}+\left (3 \operatorname {f1} \left (x \right )-y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.589

6321

\begin{align*} y^{\prime \prime }&=\operatorname {g3} \left (x \right )+\operatorname {g2} \left (x \right ) y+\operatorname {g1} \left (x \right ) y^{2}+\operatorname {g0} \left (x \right ) y^{3}+\left (\operatorname {f1} \left (x \right )+\operatorname {f0} \left (x \right ) y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.740

6322

\begin{align*} y^{\prime \prime }&=y f^{\prime }\left (x \right )+\left (f \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

2.501

6323

\begin{align*} y^{\prime \prime }&=g \left (x \right )+f \left (x \right ) y^{2}+\left (f \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.449

6324

\begin{align*} y^{\prime \prime }&=\operatorname {f3} \left (x \right )+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.507

6325

\begin{align*} y^{\prime \prime }&=\operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\ \end{align*}

[NONE]

0.570

6326

\begin{align*} y^{\prime \prime }&=a +4 b^{2} y+3 b y^{2}+3 y y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

14.549

6327

\begin{align*} 3 y y^{\prime }+y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y-y^{3} \\ \end{align*}

[NONE]

0.499

6328

\begin{align*} y^{\prime \prime }&=f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _with_potential_symmetries]]

0.435

6329

\begin{align*} y^{\prime \prime }&=a \left (1+2 y y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

191.188

6330

\begin{align*} b y+a \left (-1+y^{2}\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

8.745

6331

\begin{align*} g \left (x , y\right )+f \left (x , y\right ) y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[NONE]

0.279

6332

\begin{align*} y^{\prime \prime }&=2 x +\left (x^{2}-y^{\prime }\right )^{2} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

1174.981

6333

\begin{align*} 2 \cot \left (x \right ) y^{\prime }+2 \tan \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.758

6334

\begin{align*} y^{\prime \prime }&=a {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.940

6335

\begin{align*} y^{\prime \prime }&=a^{2}+b^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6.352

6336

\begin{align*} b y+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.881

6337

\begin{align*} b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.870

6338

\begin{align*} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

11.030

6339

\begin{align*} y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_y]]

0.948

6340

\begin{align*} f \left (x \right ) y^{\prime }+g \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.298

6341

\begin{align*} b y+a y {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.089

6342

\begin{align*} g \left (y\right )+f \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.291

6343

\begin{align*} f \left (x \right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.423

6344

\begin{align*} f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.585

6345

\begin{align*} h \left (y\right )+f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.987

6346

\begin{align*} y^{\prime }+{y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.488

6347

\begin{align*} y^{\prime \prime }&=\left (a -x \right ) {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

2.863

6348

\begin{align*} \left ({\mathrm e}^{2 y}+x \right ) {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

0.638

6349

\begin{align*} 2 y^{\prime }+4 {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.127

6350

\begin{align*} a {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

2.833

6351

\begin{align*} y^{\prime \prime }&=x {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

2.801

6352

\begin{align*} \left (a x +b y\right ) {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.625

6353

\begin{align*} a y \left (1+{y^{\prime }}^{2}\right )^{2}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.404

6354

\begin{align*} y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{k} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.556

6355

\begin{align*} g \left (x \right ) y^{\prime }+f \left (x \right ) {y^{\prime }}^{k}+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

186.424

6356

\begin{align*} y^{\prime \prime }&=A \,x^{a} y^{b} {y^{\prime }}^{c} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.309

6357

\begin{align*} y^{\prime \prime }&=a \sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

27.521

6358

\begin{align*} y^{\prime \prime }&=a \sqrt {b y^{2}+{y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

3.653

6359

\begin{align*} y^{\prime \prime }&=a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x]]

46.181

6360

\begin{align*} y^{\prime \prime }&=a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

63.863

6361

\begin{align*} y^{\prime \prime }&=a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.201

6362

\begin{align*} y^{\prime \prime }&=a y {\left (1+\left (b -y^{\prime }\right )^{2}\right )}^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

25.195

6363

\begin{align*} y^{\prime \prime }&=a \left (b +c x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.566

6364

\begin{align*} y^{3} y^{\prime }+y^{\prime \prime }&=y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} \\ \end{align*}

[[_2nd_order, _missing_x]]

4.957

6365

\begin{align*} y^{\prime \prime }&=f \left (y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _missing_x]]

6.502

6366

\begin{align*} y^{\prime \prime }&=f \left (a x +b y, y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.344

6367

\begin{align*} y^{\prime \prime }&=f \left (x , \frac {y^{\prime }}{y}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.285

6368

\begin{align*} y^{\prime \prime }&=x^{-2+n} f \left (y x^{-n}, x^{1-n} y^{\prime }\right ) \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.499

6369

\begin{align*} 2 y^{\prime \prime }&=1+12 y^{2} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

120.730

6370

\begin{align*} 2 y^{\prime \prime }&=y \left (a -y^{2}\right ) \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.046

6371

\begin{align*} 9 {y^{\prime }}^{4}+8 y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.301

6372

\begin{align*} a \,{\mathrm e}^{y} x +y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1]]

0.358

6373

\begin{align*} x y^{5}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Emden, [_2nd_order, _with_linear_symmetries]]

0.284

6374

\begin{align*} x y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[_Emden, [_2nd_order, _with_linear_symmetries]]

0.303

6375

\begin{align*} x^{m} y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.352

6376

\begin{align*} a \,x^{m} y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.328

6377

\begin{align*} b \,{\mathrm e}^{y} x +a y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.341

6378

\begin{align*} \left (-a \,x^{2}+2\right ) y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.926

6379

\begin{align*} y^{\prime \prime } x&=\left (1-y\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.707

6380

\begin{align*} x {y^{\prime }}^{2}+y^{\prime \prime } x&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.540

6381

\begin{align*} y^{\prime \prime } x&=x {y^{\prime }}^{2}+y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.106

6382

\begin{align*} -2 y^{\prime }+2 x {y^{\prime }}^{2}+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.294

6383

\begin{align*} y^{\prime \prime } x&=-y^{2}-2 y^{\prime }+x^{2} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.398

6384

\begin{align*} 2 y^{\prime }+a \,x^{2} {y^{\prime }}^{2}+y^{\prime \prime } x&=b \\ \end{align*}

[[_2nd_order, _missing_y]]

830.805

6385

\begin{align*} \left (-y+a x y^{\prime }\right )^{2}+y^{\prime \prime } x&=b \\ \end{align*}

[NONE]

0.458

6386

\begin{align*} y^{\prime \prime } x&=y^{\prime }+{y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3.012

6387

\begin{align*} y^{\prime \prime } x +2 y^{\prime }&=a \,x^{2 k} {y^{\prime }}^{k} \\ \end{align*}

[[_2nd_order, _missing_y]]

222.162

6388

\begin{align*} y^{\prime }+{y^{\prime }}^{3}+2 y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.841

6389

\begin{align*} a y \left (1-y^{n}\right )+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.414

6390

\begin{align*} a \,{\mathrm e}^{-1+y}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.437

6391

\begin{align*} \left (1+a \right ) x y^{\prime }+x^{2} y^{\prime \prime }&=x^{k} f \left (x^{k} y, k y+y^{\prime } x \right ) \\ \end{align*}

[NONE]

0.951

6392

\begin{align*} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.654

6393

\begin{align*} x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_y]]

2.184

6394

\begin{align*} 2+4 y^{\prime } x +x^{2} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

1014.710

6395

\begin{align*} x^{2} y^{\prime \prime }&=6 y-4 y^{2} x^{2}+x^{4} {y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.667

6396

\begin{align*} a \left (-y+y^{\prime } x \right )^{2}+x^{2} y^{\prime \prime }&=b \,x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.553

6397

\begin{align*} 2 y x +a \,x^{4} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=b \\ \end{align*}

[NONE]

0.543

6398

\begin{align*} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.363

6399

\begin{align*} x^{2} y^{\prime \prime }&=\sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.865

6400

\begin{align*} x^{2} y^{\prime \prime }&=f \left (\frac {x y^{\prime }}{y}\right ) y \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

54.551