| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }&=a +b x +c y^{2} \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.245 |
|
| \begin{align*}
y^{\prime \prime }&=2 y^{3} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
1.686 |
|
| \begin{align*}
y^{\prime \prime }&=a +b y+2 y^{3} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
1.441 |
|
| \begin{align*}
y^{\prime \prime }&=a +y x +2 y^{3} \\
\end{align*} |
[[_Painleve, ‘2nd‘]] |
✗ |
✗ |
✗ |
✗ |
0.246 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y+2 y^{3} \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.306 |
|
| \begin{align*}
y^{\prime \prime }&=a -2 a b x y+2 b^{2} y^{3} \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.265 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {a0} +\operatorname {a2} y+\operatorname {a1} x y+\operatorname {a3} y^{3} \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.286 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
2.778 |
|
| \begin{align*}
a \,x^{r} y^{s}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.241 |
|
| \begin{align*}
a \sin \left (y\right )+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
63.576 |
|
| \begin{align*}
a \,{\mathrm e}^{y}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
3.378 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (y\right ) \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
0.756 |
|
| \begin{align*}
y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+3 f \left (x \right ) y^{\prime }+y^{\prime \prime }&=2 y^{3} \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.481 |
|
| \begin{align*}
y y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.584 |
|
| \begin{align*}
y y^{\prime }+y^{\prime \prime }&=y^{3} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
19.944 |
|
| \begin{align*}
a y+y y^{\prime }+y^{\prime \prime }&=y^{3} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✓ |
✓ |
✗ |
21.928 |
|
| \begin{align*}
y y^{\prime }+y^{\prime \prime }&=-12 f \left (x \right ) y+y^{3}+12 f^{\prime }\left (x \right ) \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.434 |
|
| \begin{align*}
2 a^{2} y+a y^{2}+\left (3 a +y\right ) y^{\prime }+y^{\prime \prime }&=y^{3} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✓ |
✓ |
✗ |
13.765 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (x \right ) y^{2}+y^{3}+y \left (-2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+\left (3 f \left (x \right )-y\right ) y^{\prime } \\
\end{align*} |
[NONE] |
✗ |
✓ |
✗ |
✗ |
0.528 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {f2} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f1} \left (x \right ) y^{2}+y^{3}+\left (3 \operatorname {f1} \left (x \right )-y\right ) y^{\prime } \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.589 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {g3} \left (x \right )+\operatorname {g2} \left (x \right ) y+\operatorname {g1} \left (x \right ) y^{2}+\operatorname {g0} \left (x \right ) y^{3}+\left (\operatorname {f1} \left (x \right )+\operatorname {f0} \left (x \right ) y\right ) y^{\prime } \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.740 |
|
| \begin{align*}
y^{\prime \prime }&=y f^{\prime }\left (x \right )+\left (f \left (x \right )-2 y\right ) y^{\prime } \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
✗ |
✗ |
✗ |
2.501 |
|
| \begin{align*}
y^{\prime \prime }&=g \left (x \right )+f \left (x \right ) y^{2}+\left (f \left (x \right )-2 y\right ) y^{\prime } \\
\end{align*} |
[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
✗ |
✗ |
✗ |
0.449 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {f3} \left (x \right )+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.507 |
|
| \begin{align*}
y^{\prime \prime }&=\operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.570 |
|
| \begin{align*}
y^{\prime \prime }&=a +4 b^{2} y+3 b y^{2}+3 y y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
✓ |
✓ |
✗ |
14.549 |
|
| \begin{align*}
3 y y^{\prime }+y^{\prime \prime }&=f \left (x \right )+g \left (x \right ) y-y^{3} \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.499 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime } \\
\end{align*} |
[[_2nd_order, _with_potential_symmetries]] |
✗ |
✓ |
✗ |
✗ |
0.435 |
|
| \begin{align*}
y^{\prime \prime }&=a \left (1+2 y y^{\prime }\right ) \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
✓ |
✓ |
✗ |
191.188 |
|
| \begin{align*}
b y+a \left (-1+y^{2}\right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✗ |
✗ |
✗ |
8.745 |
|
| \begin{align*}
g \left (x , y\right )+f \left (x , y\right ) y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.279 |
|
| \begin{align*}
y^{\prime \prime }&=2 x +\left (x^{2}-y^{\prime }\right )^{2} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
1174.981 |
|
| \begin{align*}
2 \cot \left (x \right ) y^{\prime }+2 \tan \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.758 |
|
| \begin{align*}
y^{\prime \prime }&=a {y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
0.940 |
|
| \begin{align*}
y^{\prime \prime }&=a^{2}+b^{2} {y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
6.352 |
|
| \begin{align*}
b y+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
0.881 |
|
| \begin{align*}
b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
3.870 |
|
| \begin{align*}
c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✗ |
✗ |
✗ |
11.030 |
|
| \begin{align*}
y^{\prime \prime }&={\mathrm e}^{x} {y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.948 |
|
| \begin{align*}
f \left (x \right ) y^{\prime }+g \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.298 |
|
| \begin{align*}
b y+a y {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
1.089 |
|
| \begin{align*}
g \left (y\right )+f \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
1.291 |
|
| \begin{align*}
f \left (x \right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.423 |
|
| \begin{align*}
f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.585 |
|
| \begin{align*}
h \left (y\right )+f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✗ |
✗ |
✗ |
2.987 |
|
| \begin{align*}
y^{\prime }+{y^{\prime }}^{3}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.488 |
|
| \begin{align*}
y^{\prime \prime }&=\left (a -x \right ) {y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
2.863 |
|
| \begin{align*}
\left ({\mathrm e}^{2 y}+x \right ) {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✗ |
✗ |
0.638 |
|
| \begin{align*}
2 y^{\prime }+4 {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.127 |
|
| \begin{align*}
a {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
2.833 |
|
| \begin{align*}
y^{\prime \prime }&=x {y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
2.801 |
|
| \begin{align*}
\left (a x +b y\right ) {y^{\prime }}^{3}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_exponential_symmetries], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
0.625 |
|
| \begin{align*}
a y \left (1+{y^{\prime }}^{2}\right )^{2}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
2.404 |
|
| \begin{align*}
y^{\prime \prime }&=a \left (-y+y^{\prime } x \right )^{k} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.556 |
|
| \begin{align*}
g \left (x \right ) y^{\prime }+f \left (x \right ) {y^{\prime }}^{k}+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✗ |
✓ |
✓ |
✗ |
186.424 |
|
| \begin{align*}
y^{\prime \prime }&=A \,x^{a} y^{b} {y^{\prime }}^{c} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.309 |
|
| \begin{align*}
y^{\prime \prime }&=a \sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
27.521 |
|
| \begin{align*}
y^{\prime \prime }&=a \sqrt {b y^{2}+{y^{\prime }}^{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✓ |
✓ |
✗ |
3.653 |
|
| \begin{align*}
y^{\prime \prime }&=a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
46.181 |
|
| \begin{align*}
y^{\prime \prime }&=a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✗ |
63.863 |
|
| \begin{align*}
y^{\prime \prime }&=a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
4.201 |
|
| \begin{align*}
y^{\prime \prime }&=a y {\left (1+\left (b -y^{\prime }\right )^{2}\right )}^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
25.195 |
|
| \begin{align*}
y^{\prime \prime }&=a \left (b +c x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]] |
✗ |
✓ |
✓ |
✗ |
0.566 |
|
| \begin{align*}
y^{3} y^{\prime }+y^{\prime \prime }&=y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
4.957 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (y^{\prime }\right ) \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
6.502 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (a x +b y, y^{\prime }\right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.344 |
|
| \begin{align*}
y^{\prime \prime }&=f \left (x , \frac {y^{\prime }}{y}\right ) y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.285 |
|
| \begin{align*}
y^{\prime \prime }&=x^{-2+n} f \left (y x^{-n}, x^{1-n} y^{\prime }\right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.499 |
|
| \begin{align*}
2 y^{\prime \prime }&=1+12 y^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
120.730 |
|
| \begin{align*}
2 y^{\prime \prime }&=y \left (a -y^{2}\right ) \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✗ |
4.046 |
|
| \begin{align*}
9 {y^{\prime }}^{4}+8 y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.301 |
|
| \begin{align*}
a \,{\mathrm e}^{y} x +y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1]] |
✗ |
✓ |
✓ |
✗ |
0.358 |
|
| \begin{align*}
x y^{5}+2 y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[_Emden, [_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.284 |
|
| \begin{align*}
x y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[_Emden, [_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.303 |
|
| \begin{align*}
x^{m} y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.352 |
|
| \begin{align*}
a \,x^{m} y^{n}+2 y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.328 |
|
| \begin{align*}
b \,{\mathrm e}^{y} x +a y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.341 |
|
| \begin{align*}
\left (-a \,x^{2}+2\right ) y^{\prime }+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.926 |
|
| \begin{align*}
y^{\prime \prime } x&=\left (1-y\right ) y^{\prime } \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
0.707 |
|
| \begin{align*}
x {y^{\prime }}^{2}+y^{\prime \prime } x&=y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
1.540 |
|
| \begin{align*}
y^{\prime \prime } x&=x {y^{\prime }}^{2}+y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
1.106 |
|
| \begin{align*}
-2 y^{\prime }+2 x {y^{\prime }}^{2}+y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
1.294 |
|
| \begin{align*}
y^{\prime \prime } x&=-y^{2}-2 y^{\prime }+x^{2} {y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✗ |
✓ |
✓ |
✗ |
0.398 |
|
| \begin{align*}
2 y^{\prime }+a \,x^{2} {y^{\prime }}^{2}+y^{\prime \prime } x&=b \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
830.805 |
|
| \begin{align*}
\left (-y+a x y^{\prime }\right )^{2}+y^{\prime \prime } x&=b \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.458 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime }+{y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
3.012 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=a \,x^{2 k} {y^{\prime }}^{k} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
222.162 |
|
| \begin{align*}
y^{\prime }+{y^{\prime }}^{3}+2 y^{\prime \prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
1.841 |
|
| \begin{align*}
a y \left (1-y^{n}\right )+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.414 |
|
| \begin{align*}
a \,{\mathrm e}^{-1+y}+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.437 |
|
| \begin{align*}
\left (1+a \right ) x y^{\prime }+x^{2} y^{\prime \prime }&=x^{k} f \left (x^{k} y, k y+y^{\prime } x \right ) \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.951 |
|
| \begin{align*}
{y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
1.654 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=\left (3 x -2 y^{\prime }\right ) y^{\prime } \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.184 |
|
| \begin{align*}
2+4 y^{\prime } x +x^{2} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✓ |
1014.710 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=6 y-4 y^{2} x^{2}+x^{4} {y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]] |
✗ |
✓ |
✓ |
✗ |
0.667 |
|
| \begin{align*}
a \left (-y+y^{\prime } x \right )^{2}+x^{2} y^{\prime \prime }&=b \,x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✓ |
✗ |
0.553 |
|
| \begin{align*}
2 y x +a \,x^{4} {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=b \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.543 |
|
| \begin{align*}
b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✗ |
✗ |
0.363 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=\sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✗ |
✗ |
0.865 |
|
| \begin{align*}
x^{2} y^{\prime \prime }&=f \left (\frac {x y^{\prime }}{y}\right ) y \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✓ |
✗ |
✗ |
54.551 |
|