2.2.72 Problems 7101 to 7200

Table 2.145: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7101

\[ {}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

[_exact]

91.989

7102

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

[_exact, _Bernoulli]

0.398

7103

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

[_separable]

1.834

7104

\[ {}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.563

7105

\[ {}\frac {y-y^{\prime } x}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

2.714

7106

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.819

7107

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

69.862

7108

\[ {}x^{2} y^{\prime }-3 y x -2 y^{2} = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.280

7109

\[ {}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+y x \]

[[_homogeneous, ‘class A‘], _dAlembert]

14.017

7110

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

[[_homogeneous, ‘class A‘], _dAlembert]

4.649

7111

\[ {}y^{\prime } x = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

27.827

7112

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.389

7113

\[ {}y^{\prime } x = 2 x -6 y \]

[_linear]

1.790

7114

\[ {}y^{\prime } x = \sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.333

7115

\[ {}x^{2} y^{\prime } = y^{2}+2 y x \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.221

7116

\[ {}x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.403

7117

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.730

7118

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.164

7119

\[ {}2 x -2 y+\left (-1+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.790

7120

\[ {}y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

8.022

7121

\[ {}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0 \]

[_linear]

1.516

7122

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.564

7123

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.149

7124

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.473

7125

\[ {}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.611

7126

\[ {}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.066

7127

\[ {}y^{\prime } = \frac {x^{2}-y x}{y^{2} \cos \left (\frac {x}{y}\right )} \]

[[_homogeneous, ‘class A‘], _dAlembert]

5.902

7128

\[ {}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.840

7129

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 y x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.286

7130

\[ {}y x -1+\left (x^{2}-y x \right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

0.343

7131

\[ {}y^{\prime } x +y+3 x^{3} y^{4} y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

3.189

7132

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.318

7133

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

0.327

7134

\[ {}y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

0.286

7135

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

0.339

7136

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

0.270

7137

\[ {}y \ln \left (y\right )-2 y x +\left (x +y\right ) y^{\prime } = 0 \]

[‘y=_G(x,y’)‘]

0.312

7138

\[ {}y^{2}+y x +1+\left (x^{2}+y x +1\right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.297

7139

\[ {}x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

[_rational, _Bernoulli]

0.294

7140

\[ {}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \]

[[_homogeneous, ‘class G‘]]

5.271

7141

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.382

7142

\[ {}x y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3} \]

[NONE]

0.087

7143

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

3.240

7144

\[ {}x^{2} y^{\prime \prime } = 2 y^{\prime } x +{y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

0.496

7145

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.090

7146

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.226

7147

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

0.997

7148

\[ {}\left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

1.310

7149

\[ {}y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.590

7150

\[ {}y^{\prime \prime } = {\mathrm e}^{y} y^{\prime } \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

1.534

7151

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.362

7152

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.220

7153

\[ {}y^{\prime } x +y = x \]

[_linear]

1.651

7154

\[ {}x^{2} y^{\prime }+y = x^{2} \]

[_linear]

0.895

7155

\[ {}x^{2} y^{\prime } = y \]

[_separable]

1.204

7156

\[ {}\sec \left (x \right ) y^{\prime } = \sec \left (y\right ) \]

[_separable]

2.132

7157

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.015

7158

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.497

7159

\[ {}x^{2} y^{\prime }+2 y x = 0 \]

[_separable]

1.465

7160

\[ {}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.816

7161

\[ {}-y+y^{\prime } x = 2 x \]
i.c.

[_linear]

1.426

7162

\[ {}x^{2} y^{\prime }-2 y = 3 x^{2} \]
i.c.

[_linear]

1.274

7163

\[ {}y^{2} y^{\prime } = x \]
i.c.

[_separable]

2.047

7164

\[ {}\csc \left (x \right ) y^{\prime } = \csc \left (y\right ) \]
i.c.

[_separable]

2.243

7165

\[ {}y^{\prime } = \frac {x +y}{x -y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.954

7166

\[ {}y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.982

7167

\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]
i.c.

[_separable]

4.577

7168

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

[_separable]

1.213

7169

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.230

7170

\[ {}x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.643

7171

\[ {}y y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.331

7172

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

[[_2nd_order, _missing_y]]

1.134

7173

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

0.780

7174

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.736

7175

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

1.793

7176

\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.081

7177

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.784

7178

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

0.730

7179

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

1.598

7180

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.757

7181

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.712

7182

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

1.441

7183

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

0.758

7184

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

1.535

7185

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

1.903

7186

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

1.523

7187

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.737

7188

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.160

7189

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.152

7190

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

0.724

7191

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.065

7192

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.951

7193

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.076

7194

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.577

7195

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.341

7196

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.994

7197

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

2.017

7198

\[ {}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

0.921

7199

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

0.806

7200

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

0.640