2.2.72 Problems 7101 to 7200

Table 2.145: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7101

\[ {}y^{\prime } = y^{2}-4 \]
i.c.

[_quadrature]

1.700

7102

\[ {}y^{\prime } = y^{2}-4 \]
i.c.

[_quadrature]

1.940

7103

\[ {}y^{\prime } = y^{2}-4 \]
i.c.

[_quadrature]

1.233

7104

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

1.979

7105

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

1.731

7106

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

1.658

7107

\[ {}y^{\prime } x = y^{2}-y \]
i.c.

[_separable]

1.625

7108

\[ {}2 x \sin \left (y\right )^{2}-\left (x^{2}+10\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.957

7109

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]
i.c.

[_quadrature]

0.850

7110

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]
i.c.

[_quadrature]

0.832

7111

\[ {}y^{\prime } = \left (-1+y\right )^{2}+\frac {1}{100} \]
i.c.

[_quadrature]

0.993

7112

\[ {}y^{\prime } = \left (-1+y\right )^{2}-\frac {1}{100} \]
i.c.

[_quadrature]

1.390

7113

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

11.769

7114

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

11.311

7115

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

11.969

7116

\[ {}y^{\prime } = y-y^{3} \]
i.c.

[_quadrature]

13.326

7117

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

1.852

7118

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

1.546

7119

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

1.594

7120

\[ {}y^{\prime } = \frac {1}{y-3} \]
i.c.

[_quadrature]

1.631

7121

\[ {}y^{\prime } = \frac {1}{1+\sin \left (x \right )} \]

[_quadrature]

0.314

7122

\[ {}y^{\prime } = \frac {\sin \left (\sqrt {x}\right )}{\sqrt {y}} \]

[_separable]

410.910

7123

\[ {}\left (\sqrt {x}+x \right ) y^{\prime } = \sqrt {y}+y \]

[_separable]

16.556

7124

\[ {}y^{\prime } = y^{{2}/{3}}-y \]

[_quadrature]

9.102

7125

\[ {}y^{\prime } = \frac {{\mathrm e}^{\sqrt {x}}}{y} \]
i.c.

[_separable]

7.058

7126

\[ {}y^{\prime } = \frac {x \arctan \left (x \right )}{y} \]
i.c.

[_separable]

8.047

7127

\[ {}y^{\prime } = -\frac {x}{y} \]
i.c.

[_separable]

7.466

7128

\[ {}y^{\prime } = x \sqrt {y} \]

[_separable]

103.353

7129

\[ {}y^{\prime } = \sqrt {1+y^{2}}\, \sin \left (y\right )^{2} \]
i.c.

[_quadrature]

178.335

7130

\[ {}y^{\prime } = y \]
i.c.

[_quadrature]

2.675

7131

\[ {}y^{\prime } = y+\frac {y}{x \ln \left (x \right )} \]
i.c.

[_separable]

52.571

7132

\[ {}y^{2}+{y^{\prime }}^{2} = 1 \]

[_quadrature]

5.440

7133

\[ {}y^{\prime } = \sqrt {\frac {1-y^{2}}{-x^{2}+1}} \]
i.c.

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

102.335

7134

\[ {}m^{\prime } = -\frac {k}{m^{2}} \]
i.c.

[_quadrature]

79.387

7135

\[ {}u^{\prime } = a \sqrt {1+u^{2}} \]
i.c.

[_quadrature]

1.474

7136

\[ {}x^{\prime } = k \left (A -x\right )^{2} \]
i.c.

[_quadrature]

1.013

7137

\[ {}1+{x^{\prime }}^{2} = \frac {a}{y} \]

[_quadrature]

45.465

7138

\[ {}y^{\prime } = -\frac {8 x +5}{3 y^{2}+1} \]
i.c.

[_separable]

11.718

7139

\[ {}y^{\prime } = -\frac {8 x +5}{3 y^{2}+1} \]
i.c.

[_separable]

7.603

7140

\[ {}y^{\prime } = -\frac {8 x +5}{3 y^{2}+1} \]
i.c.

[_separable]

5.267

7141

\[ {}y^{\prime } = -\frac {8 x +5}{3 y^{2}+1} \]
i.c.

[_separable]

5.465

7142

\[ {}\left (2 y+2\right ) y^{\prime }-4 x^{3}-6 x = 0 \]
i.c.

[_separable]

11.612

7143

\[ {}y^{\prime } = \frac {x \left (1-x \right )}{y \left (y-2\right )} \]
i.c.

[_separable]

24.845

7144

\[ {}y^{\prime } = \frac {x \left (1-x \right )}{y \left (y-2\right )} \]
i.c.

[_separable]

10.431

7145

\[ {}y^{\prime } = 5 y \]

[_quadrature]

1.415

7146

\[ {}y^{\prime }+2 y = 0 \]

[_quadrature]

1.315

7147

\[ {}y^{\prime }+y = {\mathrm e}^{3 x} \]

[[_linear, ‘class A‘]]

4.172

7148

\[ {}3 y^{\prime }+12 y = 4 \]

[_quadrature]

12.007

7149

\[ {}y^{\prime }+3 x^{2} y = x^{2} \]

[_separable]

4.244

7150

\[ {}y^{\prime }+2 x y = x^{3} \]

[_linear]

2.827

7151

\[ {}x^{2} y^{\prime }+x y = 1 \]

[_linear]

7.715

7152

\[ {}y^{\prime } = 2 y+x^{2}+5 \]

[[_linear, ‘class A‘]]

2.416

7153

\[ {}-y+y^{\prime } x = x^{2} \sin \left (x \right ) \]

[_linear]

9.132

7154

\[ {}y^{\prime } x +2 y = 3 \]

[_separable]

8.167

7155

\[ {}4 y+y^{\prime } x = x^{3}-x \]

[_linear]

7.520

7156

\[ {}\left (x +1\right ) y^{\prime }-x y = x^{2}+x \]

[_linear]

12.352

7157

\[ {}x^{2} y^{\prime }+x \left (x +2\right ) y = {\mathrm e}^{x} \]

[_linear]

11.348

7158

\[ {}y^{\prime } x +\left (x +1\right ) y = {\mathrm e}^{-x} \sin \left (2 x \right ) \]

[_linear]

18.629

7159

\[ {}y-4 \left (x +y^{6}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

15.487

7160

\[ {}y = \left (y \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

23.699

7161

\[ {}\cos \left (x \right ) y^{\prime }+y \sin \left (x \right ) = 1 \]

[_linear]

13.755

7162

\[ {}\cos \left (x \right )^{2} \sin \left (x \right ) y^{\prime }+\cos \left (x \right )^{3} y = 1 \]

[_linear]

20.769

7163

\[ {}\left (x +1\right ) y^{\prime }+\left (x +2\right ) y = 2 x \,{\mathrm e}^{-x} \]

[_linear]

8.869

7164

\[ {}\left (x +2\right )^{2} y^{\prime } = 5-8 y-4 x y \]

[_linear]

14.352

7165

\[ {}r^{\prime }+r \sec \left (t \right ) = \cos \left (t \right ) \]

[_linear]

2.707

7166

\[ {}p^{\prime }+2 t p = p+4 t -2 \]

[_separable]

1.591

7167

\[ {}y^{\prime } x +\left (1+3 x \right ) y = {\mathrm e}^{-3 x} \]

[_linear]

10.220

7168

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 y = \left (x +1\right )^{2} \]

[_linear]

8.090

7169

\[ {}y^{\prime } = x +5 y \]
i.c.

[[_linear, ‘class A‘]]

1.512

7170

\[ {}y^{\prime } = 2 x -3 y \]
i.c.

[[_linear, ‘class A‘]]

1.427

7171

\[ {}y^{\prime } x +y = {\mathrm e}^{x} \]
i.c.

[_linear]

9.248

7172

\[ {}y y^{\prime }-x = 2 y^{2} \]
i.c.

[_rational, _Bernoulli]

14.217

7173

\[ {}L i^{\prime }+R i = E \]
i.c.

[_quadrature]

2.001

7174

\[ {}T^{\prime } = k \left (T-T_{m} \right ) \]
i.c.

[_quadrature]

1.605

7175

\[ {}y^{\prime } x +y = 4 x +1 \]
i.c.

[_linear]

9.858

7176

\[ {}y^{\prime }+4 x y = x^{3} {\mathrm e}^{x^{2}} \]
i.c.

[_linear]

3.305

7177

\[ {}\left (x +1\right ) y^{\prime }+y = \ln \left (x \right ) \]
i.c.

[_linear]

8.479

7178

\[ {}x \left (x +1\right ) y^{\prime }+x y = 1 \]
i.c.

[_linear]

3.806

7179

\[ {}y^{\prime }-y \sin \left (x \right ) = 2 \sin \left (x \right ) \]
i.c.

[_separable]

12.687

7180

\[ {}y^{\prime }+y \tan \left (x \right ) = \cos \left (x \right )^{2} \]
i.c.

[_linear]

5.046

7181

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le x \le 3 \\ 0 & 3<x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

1.336

7182

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le x \le 1 \\ -1 & 1<x \end {array}\right . \]
i.c.

[[_linear, ‘class A‘]]

1.405

7183

\[ {}y^{\prime }+2 x y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 0 & 1\le x \end {array}\right . \]
i.c.

[_linear]

8.133

7184

\[ {}\left (x^{2}+1\right ) y^{\prime }+2 x y = \left \{\begin {array}{cc} x & 0\le x <1 \\ -x & 1\le x \end {array}\right . \]
i.c.

[_linear]

5.946

7185

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le x \le 1 \\ -\frac {2}{x} & 1<x \end {array}\right .\right ) y = 4 x \]
i.c.

[_linear]

7.832

7186

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 1 & 0\le x \le 2 \\ 5 & 2<x \end {array}\right .\right ) y = 0 \]
i.c.

[_separable]

12.150

7187

\[ {}y^{\prime }-2 x y = 1 \]
i.c.

[_linear]

3.915

7188

\[ {}y^{\prime }-2 x y = -1 \]
i.c.

[_linear]

7.939

7189

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 1 \]
i.c.

[_linear]

8.267

7190

\[ {}x^{2} y^{\prime }-y = x^{3} \]
i.c.

[_linear]

6.989

7191

\[ {}x^{3} y^{\prime }+2 x^{2} y = 10 \sin \left (x \right ) \]
i.c.

[_linear]

7.378

7192

\[ {}y^{\prime }-\sin \left (x^{2}\right ) y = 0 \]
i.c.

[_separable]

6.431

7193

\[ {}1 = \left (x +y^{2}\right ) y^{\prime } \]

[[_1st_order, _with_exponential_symmetries]]

8.101

7194

\[ {}y+\left (2 x +x y-3\right ) y^{\prime } = 0 \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

7.778

7195

\[ {}y^{\prime } x -4 y = x^{6} {\mathrm e}^{x} \]
i.c.

[_linear]

11.498

7196

\[ {}y^{\prime } x -4 y = x^{6} {\mathrm e}^{x} \]
i.c.

[_linear]

15.330

7197

\[ {}y^{\prime } x -4 y = x^{6} {\mathrm e}^{x} \]
i.c.

[_linear]

4.566

7198

\[ {}\left [\begin {array}{c} x^{\prime }=-\lambda _{1} x \\ y^{\prime }=\lambda _{1} x-\lambda _{2} y \end {array}\right ] \]

system_of_ODEs

0.509

7199

\[ {}e^{\prime } = -\frac {e}{r c} \]
i.c.

[_quadrature]

2.729

7200

\[ {}2 x -1+\left (3 y+7\right ) y^{\prime } = 0 \]

[_separable]

15.726