2.2.73 Problems 7201 to 7300

Table 2.147: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7201

\[ {}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]

[_Lienard]

3.503

7202

\[ {}3 {y^{\prime \prime }}^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } {y^{\prime }}^{2} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

0.507

7203

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.679

7204

\[ {}x^{2} y y^{\prime \prime } = x^{2} {y^{\prime }}^{2}-y^{2} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

0.169

7205

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t} \]

[[_3rd_order, _with_linear_symmetries]]

0.133

7206

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \left (t \right )-5 \cos \left (t \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

1.345

7207

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \left (t \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.499

7208

\[ {}y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t} = 0 \]

[[_high_order, _missing_y]]

0.230

7209

\[ {}x x^{\prime \prime }-{x^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.251

7210

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.637

7211

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.970

7212

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.039

7213

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.042

7214

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.406

7215

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.164

7216

\[ {}y^{\prime \prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

2.891

7217

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.190

7218

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.919

7219

\[ {}y+\sqrt {y^{2}+x^{2}}-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.620

7220

\[ {}{y^{\prime }}^{2} = a^{2}-y^{2} \]

[_quadrature]

0.666

7221

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.637

7222

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.885

7223

\[ {}y \left (x^{2} y^{2}+1\right )+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.889

7224

\[ {}2 x^{3} y^{2}-y+\left (2 y^{3} x^{2}-x \right ) y^{\prime } = 0 \]

[_rational]

1.519

7225

\[ {}\frac {1}{y}+\sec \left (\frac {y}{x}\right )-\frac {x y^{\prime }}{y^{2}} = 0 \]

[[_homogeneous, ‘class D‘]]

16.897

7226

\[ {}\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right ) = 0 \]

[_Bernoulli]

2.695

7227

\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.744

7228

\[ {}\left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \sin \left (\theta \right )^{2}-\phi \sin \left (\theta \right ) \cos \left (\theta \right ) = \frac {\cos \left (2 \theta \right )}{2}+1 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

4.588

7229

\[ {}a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

2.363

7230

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

[[_high_order, _missing_x]]

0.077

7231

\[ {}y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

[_separable]

1.600

7232

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

[_exact]

1.688

7233

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.299

7234

\[ {}\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.911

7235

\[ {}\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (x +1\right ) \eta ^{\prime }+\left (k +1\right ) \eta = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.890

7236

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.536

7237

\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

6.514

7238

\[ {}-y+x y^{\prime } = y^{2}+x^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.379

7239

\[ {}-y+x y^{\prime } = x \sqrt {x^{2}-y^{2}}\, y^{\prime } \]

[‘y=_G(x,y’)‘]

4.372

7240

\[ {}x +y^{\prime } y+y-x y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.654

7241

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-y^{2} y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

0.415

7242

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }=2 x_{1}-9 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.502

7243

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+3 x_{2} \\ x_{2}^{\prime }=5 x_{1}+3 x_{2} \end {array}\right ] \]

system_of_ODEs

0.333

7244

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+3 x_{2} \\ x_{2}^{\prime }=-3 x_{1}+5 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.413

7245

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=4 x_{1}-x_{2} \\ x_{2}^{\prime }=5 x_{1}+2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.494

7246

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2} \\ x_{2}^{\prime }=x_{1}-2 x_{2} \end {array}\right ] \]

system_of_ODEs

0.321

7247

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 x_{1}+x_{2}+2 \,{\mathrm e}^{-t} \\ x_{2}^{\prime }=x_{1}-2 x_{2}+3 t \end {array}\right ] \]

system_of_ODEs

0.503

7248

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2} \\ x_{2}^{\prime }=16 x_{1}-5 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.499

7249

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}-2 x_{2} \\ x_{2}^{\prime }=3 x_{1}-4 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.454

7250

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }=2 x_{1}-9 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.444

7251

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+3 x_{2} \\ x_{2}^{\prime }=-3 x_{1}+5 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.441

7252

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-18 x_{2} \\ x_{2}^{\prime }=2 x_{1}-9 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.510

7253

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=3 x_{1}-x_{2} \\ x_{2}^{\prime }=4 x_{1}-2 x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.480

7254

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}-8 \\ x_{2}^{\prime }=x_{1}+x_{2}+3 \end {array}\right ] \]

system_of_ODEs

0.431

7255

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=x_{1}+x_{2}-8 \\ x_{2}^{\prime }=x_{1}+x_{2}+3 \end {array}\right ] \]
i.c.

system_of_ODEs

0.611

7256

\[ {}y^{\prime } = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[_quadrature]

0.378

7257

\[ {}y^{\prime \prime } = x +2 \]

[[_2nd_order, _quadrature]]

1.265

7258

\[ {}y^{\prime \prime \prime } = x^{2} \]

[[_3rd_order, _quadrature]]

0.107

7259

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

1.375

7260

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (x \right ) \cos \left (x \right ) \]

[_linear]

1.665

7261

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.934

7262

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1.983

7263

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.642

7264

\[ {}y^{\prime }+5 y = 2 \]

[_quadrature]

1.040

7265

\[ {}y^{\prime \prime } = 3 x +1 \]

[[_2nd_order, _quadrature]]

1.238

7266

\[ {}y^{\prime } = k y \]

[_quadrature]

0.704

7267

\[ {}y^{\prime }-2 y = 1 \]

[_quadrature]

0.923

7268

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

1.008

7269

\[ {}y^{\prime }-2 y = x^{2}+x \]

[[_linear, ‘class A‘]]

1.047

7270

\[ {}3 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

1.096

7271

\[ {}y^{\prime }+3 y = {\mathrm e}^{i x} \]

[[_linear, ‘class A‘]]

0.858

7272

\[ {}y^{\prime }+i y = x \]

[[_linear, ‘class A‘]]

0.981

7273

\[ {}L y^{\prime }+R y = E \]

[_quadrature]

0.760

7274

\[ {}L y^{\prime }+R y = E \sin \left (\omega x \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.512

7275

\[ {}L y^{\prime }+R y = E \,{\mathrm e}^{i \omega x} \]
i.c.

[[_linear, ‘class A‘]]

1.145

7276

\[ {}y^{\prime }+a y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

1.203

7277

\[ {}y^{\prime }+2 x y = x \]

[_separable]

1.098

7278

\[ {}x y^{\prime }+y = 3 x^{3}-1 \]

[_linear]

0.994

7279

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

[_separable]

1.235

7280

\[ {}y^{\prime }-\tan \left (x \right ) y = {\mathrm e}^{\sin \left (x \right )} \]

[_linear]

1.579

7281

\[ {}y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

2.187

7282

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{-\sin \left (x \right )} \]
i.c.

[_linear]

1.713

7283

\[ {}x^{2} y^{\prime }+2 x y = 1 \]

[_linear]

1.208

7284

\[ {}y^{\prime }+2 y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

1.166

7285

\[ {}y^{\prime } = y+1 \]
i.c.

[_quadrature]

1.102

7286

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1.217

7287

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1.253

7288

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

2.086

7289

\[ {}3 y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1.990

7290

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

1.997

7291

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

1.320

7292

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.071

7293

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.282

7294

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

[[_2nd_order, _missing_x]]

0.805

7295

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.400

7296

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.425

7297

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.950

7298

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.602

7299

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.590

7300

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.597