2.2.78 Problems 7701 to 7800

Table 2.157: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7701

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.969

7702

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.611

7703

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

0.127

7704

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

2.341

7705

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

2.064

7706

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

[[_Emden, _Fowler]]

1.438

7707

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.883

7708

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.075

7709

\[ {}3 x^{2} y^{\prime \prime }+x^{6} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.425

7710

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.171

7711

\[ {}x y^{\prime \prime }+4 y = 0 \]

[[_Emden, _Fowler]]

1.227

7712

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

0.967

7713

\[ {}\left (x^{2}+x -2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.444

7714

\[ {}x^{2} y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.937

7715

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.995

7716

\[ {}4 x^{2} y^{\prime \prime }+\left (4 x^{4}-5 x \right ) y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.117

7717

\[ {}x^{2} y^{\prime \prime }+\left (-3 x^{2}+x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.002

7718

\[ {}3 x^{2} y^{\prime \prime }+5 y^{\prime } x +3 x y = 0 \]

[[_Emden, _Fowler]]

1.016

7719

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +x^{2} y = 0 \]

[_Lienard]

0.735

7720

\[ {}x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

1.056

7721

\[ {}2 x^{2} y^{\prime \prime }+\left (x^{2}+5 x \right ) y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.212

7722

\[ {}4 x^{2} y^{\prime \prime }-4 x \,{\mathrm e}^{x} y^{\prime }+3 \cos \left (x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.003

7723

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+3 \left (x^{2}+x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.133

7724

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.936

7725

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.089

7726

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (-x^{3}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.952

7727

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.085

7728

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

1.245

7729

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (4 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.376

7730

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

0.646

7731

\[ {}y^{\prime } = x^{2} y \]

[_separable]

1.625

7732

\[ {}y y^{\prime } = x \]

[_separable]

3.699

7733

\[ {}y^{\prime } = \frac {x^{2}+x}{y-y^{2}} \]

[_separable]

1.459

7734

\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{{\mathrm e}^{x}+1} \]

[_separable]

1.767

7735

\[ {}y^{\prime } = x^{2} y^{2}-4 x^{2} \]

[_separable]

2.533

7736

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.350

7737

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

1.489

7738

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

0.938

7739

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.621

7740

\[ {}y^{\prime } = \frac {y^{2}}{x y+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

13.783

7741

\[ {}y^{\prime } = \frac {x^{2}+x y+y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.611

7742

\[ {}y^{\prime } = \frac {y+x \,{\mathrm e}^{-\frac {2 y}{x}}}{x} \]

[[_homogeneous, ‘class A‘], _dAlembert]

16.133

7743

\[ {}y^{\prime } = \frac {x -y+2}{x +y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.511

7744

\[ {}y^{\prime } = \frac {2 x +3 y+1}{x -2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.024

7745

\[ {}y^{\prime } = \frac {x +y+1}{2 x +2 y-1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.835

7746

\[ {}y^{\prime } = \frac {\left (x +y-1\right )^{2}}{2 \left (x +2\right )^{2}} \]

[[_homogeneous, ‘class C‘], _rational, _Riccati]

2.373

7747

\[ {}2 x y+\left (x^{2}+3 y^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

0.339

7748

\[ {}x^{2}+x y+\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

0.268

7749

\[ {}{\mathrm e}^{x}+{\mathrm e}^{y} \left (1+y\right ) y^{\prime } = 0 \]

[_separable]

0.380

7750

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}-\sin \left (x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]

[_separable]

0.483

7751

\[ {}x^{2} y^{3}-x^{3} y^{2} y^{\prime } = 0 \]

[_separable]

0.578

7752

\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.401

7753

\[ {}2 y \,{\mathrm e}^{2 x}+2 x \cos \left (y\right )+\left ({\mathrm e}^{2 x}-x^{2} \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

0.398

7754

\[ {}3 x^{2} \ln \left (x \right )+x^{2}+y+y^{\prime } x = 0 \]

[_linear]

0.258

7755

\[ {}2 y^{3}+2+3 x y^{2} y^{\prime } = 0 \]

[_separable]

0.566

7756

\[ {}\cos \left (x \right ) \cos \left (y\right )-2 \sin \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

0.427

7757

\[ {}5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.413

7758

\[ {}{\mathrm e}^{y}+x \,{\mathrm e}^{y}+x \,{\mathrm e}^{y} y^{\prime } = 0 \]

[_quadrature]

0.351

7759

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

2.090

7760

\[ {}y^{\prime \prime }+{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

0.866

7761

\[ {}y y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.208

7762

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.748

7763

\[ {}y^{\prime \prime } = y y^{\prime } \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.662

7764

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

[[_2nd_order, _missing_y]]

1.144

7765

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

6.263

7766

\[ {}y^{\prime \prime } = -\frac {1}{2 {y^{\prime }}^{2}} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

3.356

7767

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

400.405

7768

\[ {}y^{\prime \prime }+\sin \left (y\right ) = 0 \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

147.454

7769

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1} \\ y_{2}^{\prime }=y_{1}+y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.510

7770

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{2} \\ y_{2}^{\prime }=6 y_{1}+y_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.648

7771

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=y_{1}+y_{2} \\ y_{2}^{\prime }=y_{1}+y_{2}+{\mathrm e}^{3 x} \end {array}\right ] \]
i.c.

system_of_ODEs

0.559

7772

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=3 y_{1}+x y_{3} \\ y_{2}^{\prime }=y_{2}+x^{3} y_{3} \\ y_{3}^{\prime }=2 y_{1} x -y_{2}+{\mathrm e}^{x} y_{3} \end {array}\right ] \]

system_of_ODEs

0.077

7773

\[ {}y^{\prime } = 2 x \]

[_quadrature]

0.451

7774

\[ {}y^{\prime } x = 2 y \]

[_separable]

2.247

7775

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

[_separable]

1.713

7776

\[ {}y^{\prime } = k y \]

[_quadrature]

0.705

7777

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

2.380

7778

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

2.454

7779

\[ {}y^{\prime } x +y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

4.024

7780

\[ {}y^{\prime } x = y+x^{2}+y^{2} \]

[[_homogeneous, ‘class D‘], _rational, _Riccati]

1.651

7781

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

3.375

7782

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.124

7783

\[ {}y^{\prime } x +y = x^{4} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

2.043

7784

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

14.026

7785

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

[[_1st_order, _with_linear_symmetries]]

1.796

7786

\[ {}1+y^{2}+y^{2} y^{\prime } = 0 \]

[_quadrature]

4.421

7787

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

[_quadrature]

0.515

7788

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

[_quadrature]

0.505

7789

\[ {}\left (x +1\right ) y^{\prime } = x \]

[_quadrature]

0.533

7790

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

[_quadrature]

0.546

7791

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

[_quadrature]

0.596

7792

\[ {}y^{\prime } x = 1 \]

[_quadrature]

0.483

7793

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

[_quadrature]

0.400

7794

\[ {}\sin \left (x \right ) y^{\prime } = 1 \]

[_quadrature]

0.617

7795

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

[_quadrature]

0.697

7796

\[ {}\left (x^{2}-3 x +2\right ) y^{\prime } = x \]

[_quadrature]

0.596

7797

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

0.693

7798

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]
i.c.

[_quadrature]

0.820

7799

\[ {}y^{\prime } = \ln \left (x \right ) \]
i.c.

[_quadrature]

0.421

7800

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]
i.c.

[_quadrature]

0.667