2.2.78 Problems 7701 to 7800

Table 2.157: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7701

\[ {}2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]

[[_1st_order, _with_linear_symmetries]]

262.393

7702

\[ {}{y^{\prime }}^{2}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.293

7703

\[ {}y = y^{\prime } x +k {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.328

7704

\[ {}x^{8} {y^{\prime }}^{2}+3 y^{\prime } x +9 y = 0 \]

[[_homogeneous, ‘class G‘]]

2.240

7705

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.199

7706

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.456

7707

\[ {}3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

1.927

7708

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.495

7709

\[ {}y^{\prime } \left (y^{\prime } x -y+k \right )+a = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.469

7710

\[ {}x^{6} {y^{\prime }}^{3}-3 y^{\prime } x -3 y = 0 \]

[[_1st_order, _with_linear_symmetries]]

12.093

7711

\[ {}y = x^{6} {y^{\prime }}^{3}-y^{\prime } x \]

[[_1st_order, _with_linear_symmetries]]

14.033

7712

\[ {}x {y^{\prime }}^{4}-2 y {y^{\prime }}^{3}+12 x^{3} = 0 \]

[[_1st_order, _with_linear_symmetries]]

2.713

7713

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.569

7714

\[ {}{y^{\prime }}^{2}-y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.365

7715

\[ {}2 {y^{\prime }}^{3}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.464

7716

\[ {}2 {y^{\prime }}^{2}+y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.477

7717

\[ {}{y^{\prime }}^{3}+2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.484

7718

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

0.448

7719

\[ {}{y^{\prime }}^{3}-y^{\prime } x +2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.466

7720

\[ {}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.416

7721

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

[_rational, _dAlembert]

1.087

7722

\[ {}5 {y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.376

7723

\[ {}{y^{\prime }}^{2}+3 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.359

7724

\[ {}y = y^{\prime } x +x^{3} {y^{\prime }}^{2} \]

[[_homogeneous, ‘class G‘], _rational]

1.931

7725

\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.423

7726

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

0.544

7727

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

0.563

7728

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.367

7729

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.319

7730

\[ {}\left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.233

7731

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

0.374

7732

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]
i.c.

[[_2nd_order, _missing_y]]

1.373

7733

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

1.519

7734

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.244

7735

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.622

7736

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.538

7737

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.489

7738

\[ {}y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \]

[[_2nd_order, _missing_y]]

2.148

7739

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.312

7740

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.272

7741

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

21.988

7742

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

25.065

7743

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.749

7744

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.781

7745

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

[[_2nd_order, _missing_y]]

0.952

7746

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.183

7747

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

0.213

7748

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.993

7749

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.195

7750

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.363

7751

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

0.486

7752

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

1.032

7753

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.101

7754

\[ {}\left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

12.990

7755

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.670

7756

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

0.419

7757

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 y^{\prime } x \right ) \]

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.528

7758

\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.709

7759

\[ {}y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

0.652

7760

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x +x^{2} = 0 \]
i.c.

[[_2nd_order, _missing_y]]

4.924

7761

\[ {}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.335

7762

\[ {}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

9.536

7763

\[ {}3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.620

7764

\[ {}4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.493

7765

\[ {}y^{\prime \prime }+y = -\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.207

7766

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.982

7767

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.007

7768

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1 \]

[[_2nd_order, _with_linear_symmetries]]

1.033

7769

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

5.135

7770

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

1.838

7771

\[ {}9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5} = 0 \]

[[_1st_order, _with_linear_symmetries]]

176.945

7772

\[ {}4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.638

7773

\[ {}x^{6} {y^{\prime }}^{2}-2 y^{\prime } x -4 y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.211

7774

\[ {}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.380

7775

\[ {}y^{2} {y^{\prime }}^{2}-y \left (x +1\right ) y^{\prime }+x = 0 \]

[_quadrature]

2.916

7776

\[ {}4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

[[_homogeneous, ‘class G‘]]

7.010

7777

\[ {}4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries]]

204.875

7778

\[ {}{y^{\prime }}^{4}+y^{\prime } x -3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.048

7779

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.171

7780

\[ {}16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]

[[_homogeneous, ‘class G‘]]

3.857

7781

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

0.441

7782

\[ {}{y^{\prime }}^{3}-2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.183

7783

\[ {}9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

18.187

7784

\[ {}x^{2} {y^{\prime }}^{2}-\left (2 y x +1\right ) y^{\prime }+y^{2}+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.584

7785

\[ {}x^{6} {y^{\prime }}^{2} = 16 y+8 y^{\prime } x \]

[[_homogeneous, ‘class G‘]]

2.169

7786

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

2.605

7787

\[ {}\left (y^{\prime }+1\right )^{2} \left (y-y^{\prime } x \right ) = 1 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.816

7788

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.646

7789

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

1.835

7790

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.817

7791

\[ {}x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.538

7792

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

227.768

7793

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.318

7794

\[ {}y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

0.525

7795

\[ {}y^{\prime \prime }+3 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.587

7796

\[ {}\left (4 x^{2}+1\right ) y^{\prime \prime }-8 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.606

7797

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.615

7798

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.479

7799

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+10 y^{\prime } x +20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.638

7800

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.616