2.2.79 Problems 7801 to 7900

Table 2.159: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

7801

(x+1)(x2+1)y=2x2+x
i.c.

[_quadrature]

7802

y=1+2xy

[_linear]

7803

y5y+4y=0

[[_2nd_order, _missing_x]]

7804

y=2xy21x2y

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7805

2y+y5y+2y=0

[[_3rd_order, _missing_x]]

7806

x5y+y5=0

[_separable]

7807

y=4xy

[_separable]

7808

y+ytan(x)=0

[_separable]

7809

1+y2+(x2+1)y=0

[_separable]

7810

yln(y)yx=0

[_separable]

7811

yx=(4x2+1)tan(y)

[_separable]

7812

ysin(y)=x2

[_separable]

7813

yytan(x)=0

[_separable]

7814

xyy=1+y

[_separable]

7815

xy2x2y=0

[_separable]

7816

yy=x+1
i.c.

[_separable]

7817

x2y=y
i.c.

[_separable]

7818

yx2+1=xy
i.c.

[_separable]

7819

y2y=x+2
i.c.

[_separable]

7820

y=x2y2
i.c.

[_separable]

7821

(1+y)y=x2+1
i.c.

[_separable]

7822

yy=x2

[[_2nd_order, _missing_y]]

7823

yy=x(x+1)
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

7824

yxy=0

[_separable]

7825

y+xy=x

[_separable]

7826

y+y=1e2x+1

[_linear]

7827

y+y=2xex+x2

[[_linear, ‘class A‘]]

7828

2yx3=yx

[_linear]

7829

y+2xy=0

[_separable]

7830

yx3y=x4

[_linear]

7831

(x2+1)y+2xy=cot(x)

[_linear]

7832

y+cot(x)y=2xcsc(x)

[_linear]

7833

yx+xycot(x)+yx=0

[_linear]

7834

yxy=0
i.c.

[_separable]

7835

y2xy=6xex2
i.c.

[_linear]

7836

xln(x)y+y=3x3
i.c.

[_linear]

7837

yyx=x2
i.c.

[_linear]

7838

y+4y=ex
i.c.

[[_linear, ‘class A‘]]

7839

xy+x2y=2x
i.c.

[_separable]

7840

yx+y=x4y3

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7841

xy2y+y3=xcos(x)

[_Bernoulli]

7842

yx+y=xy2

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7843

y+xy=xy4

[_separable]

7844

(ey2xy)y=y2

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7845

yyx=yy2ey

[[_1st_order, _with_linear_symmetries]]

7846

yx+2=x3(1+y)y

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

7847

yx=2x2y+yln(x)

[_separable]

7848

ysin(2x)=2y+2cos(x)

[_linear]

7849

(x+2y)y+y=0

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7850

sin(x)tan(y)+1+cos(x)sec(y)2y=0

[‘y=_G(x,y’)‘]

7851

yx3+(y3+x)y=0

[_exact, _rational]

7852

2y24x+5=(42y+4xy)y

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7853

y+ycos(xy)+(x+xcos(xy))y=0

[_separable]

7854

cos(x)cos(y)2+2sin(x)sin(y)cos(y)y=0

[_separable]

7855

(sin(x)sin(y)xey)y=ey+cos(x)cos(y)

[_exact]

7856

sin(xy)y+xsin(xy)yy2=0

[_separable]

7857

1+y+(1x)y=0

[_separable]

7858

2xy3+cos(x)y+(3x2y2+sin(x))y=0

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

7859

y1x2y2+xy1x2y2=1

[_exact, _rational, _Riccati]

7860

2xy4+sin(y)+(4x2y3+xcos(y))y=0

[_exact]

7861

yx+y1x2y2+x=0

[_exact, _rational, _Riccati]

7862

2x(1+x2y)=x2yy

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

7863

ln(y)x+xy+(yln(x)+xy)y=0

[_separable]

7864

ey2csc(y)csc(x)2+(2xyey2csc(y)cot(y)cot(x))y=0

[_exact]

7865

1+y2sin(2x)2ycos(x)2y=0

[_exact, _Bernoulli]

7866

x(x2+y2)3/2+yy(x2+y2)3/2=0

[_separable]

7867

3x2(1+ln(y))+(x3y2y)y=0

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7868

yyx(x+y)2+y=1

[[_1st_order, _with_linear_symmetries], _exact, _rational]

7869

4y22x24xy2x3+(8y2x2)y4y3x2y=0

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

7870

x22y2+xyy=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7871

x2y3xy2y2=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7872

x2y=3(x2+y2)arctan(yx)+xy

[[_homogeneous, ‘class A‘], _dAlembert]

7873

xsin(yx)y=ysin(yx)+x

[[_homogeneous, ‘class A‘], _dAlembert]

7874

yx=y+2eyxx

[[_homogeneous, ‘class A‘], _dAlembert]

7875

xy(x+y)y=0

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7876

yx=2x6y

[_linear]

7877

yx=x2+y2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7878

x2y=y2+2xy

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7879

x3+y3xy2y=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7880

y=x+y+4xy6

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7881

y=x+y+4x+y6

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7882

2x2y+(1+y)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7883

y=x+y1x+4y+2

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7884

2x+3y14(x+1)y=0

[_linear]

7885

y=1xy22x2y

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7886

y=2+3xy24x2y

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7887

y=yxy2x+x2y

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

7888

y=sin(yx)cos(yx)

[[_homogeneous, ‘class A‘], _dAlembert]

7889

exyyyx=0

[[_homogeneous, ‘class A‘], _dAlembert]

7890

y=x2xyy2cos(xy)

[[_homogeneous, ‘class A‘], _dAlembert]

7891

y=ytan(yx)x

[[_homogeneous, ‘class A‘], _dAlembert]

7892

(3x2y2)y2xy=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

7893

xy1+(x2xy)y=0

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

7894

yx+y+3x3y4y=0

[[_homogeneous, ‘class G‘], _rational]

7895

ex+(excot(y)+2csc(y)y)y=0

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7896

(x+2)sin(y)+xcos(y)y=0

[_separable]

7897

y+(x2x2y3)y=0

[[_homogeneous, ‘class G‘], _rational]

7898

x+3y2+2xyy=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

7899

y+(2xeyy)y=0

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

7900

yln(y)2xy+(x+y)y=0

[‘y=_G(x,y’)‘]