2.2.79 Problems 7801 to 7900

Table 2.159: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7801

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.231

7802

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

[_Lienard]

0.731

7803

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.122

7804

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.173

7805

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (4 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.934

7806

\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.085

7807

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

0.848

7808

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.122

7809

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.787

7810

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-3 \left (x -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.835

7811

\[ {}3 \left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.814

7812

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

1.243

7813

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.977

7814

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

[_Jacobi]

1.102

7815

\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.878

7816

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.148

7817

\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (5+3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.232

7818

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.575

7819

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime }+\frac {y^{\prime }}{2}+y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.235

7820

\[ {}y^{\prime \prime }+2 x y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

0.539

7821

\[ {}y^{\prime \prime }-x y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

0.614

7822

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}-x \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.442

7823

\[ {}2 y^{\prime \prime }+x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.611

7824

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.742

7825

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.616

7826

\[ {}y^{\prime \prime }-\left (x +1\right ) y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.685

7827

\[ {}\left (x -1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.711

7828

\[ {}\left (x^{2}+1\right ) x^{2} y^{\prime \prime }-x y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.986

7829

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.950

7830

\[ {}x y^{\prime \prime }-4 y^{\prime }+x y = 0 \]

[_Lienard]

0.897

7831

\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.934

7832

\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.052

7833

\[ {}x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

0.873

7834

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.976

7835

\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.829

7836

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.006

7837

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (x -1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.007

7838

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.006

7839

\[ {}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.007

7840

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.873

7841

\[ {}9 \left (-2+x \right )^{2} \left (x -3\right ) y^{\prime \prime }+6 x \left (-2+x \right ) y^{\prime }+16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.388

7842

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+p \left (p +1\right ) y = 0 \]

[_Gegenbauer]

1.310

7843

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 5 \,{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.306

7844

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.284

7845

\[ {}y^{\prime \prime }-y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.296

7846

\[ {}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.197

7847

\[ {}L i^{\prime }+R i = E_{0} \delta \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.117

7848

\[ {}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right ) \]
i.c.

[[_linear, ‘class A‘]]

0.279

7849

\[ {}y^{\prime \prime }+3 y^{\prime }-5 y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

0.365

7850

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = -6 \,{\mathrm e}^{-t +\pi } \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.793

7851

\[ {}y^{\prime \prime }+2 y^{\prime }-y = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.347

7852

\[ {}y^{\prime \prime }-y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.503

7853

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

0.204

7854

\[ {}y^{\prime \prime }+3 y^{\prime }+3 y = 2 \]

[[_2nd_order, _missing_x]]

0.306

7855

\[ {}y^{\prime \prime }+y^{\prime }+2 y = t \]

[[_2nd_order, _with_linear_symmetries]]

0.302

7856

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.217

7857

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

29.316

7858

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ] \]

system_of_ODEs

0.322

7859

\[ {}\left [\begin {array}{c} x^{\prime }=x+3 y \\ y^{\prime }=3 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.489

7860

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=3 x+2 y \end {array}\right ] \]

system_of_ODEs

0.322

7861

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+t -1 \\ y^{\prime }=3 x+2 y-5 t -2 \end {array}\right ] \]

system_of_ODEs

0.516

7862

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.267

7863

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=y \end {array}\right ] \]

system_of_ODEs

0.222

7864

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+4 y \\ y^{\prime }=-2 x+3 y \end {array}\right ] \]

system_of_ODEs

0.311

7865

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-2 y \\ y^{\prime }=5 x+2 y \end {array}\right ] \]

system_of_ODEs

0.427

7866

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+4 y \\ y^{\prime }=y-x \end {array}\right ] \]

system_of_ODEs

0.289

7867

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-3 y \\ y^{\prime }=8 x-6 y \end {array}\right ] \]

system_of_ODEs

0.308

7868

\[ {}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=3 y \end {array}\right ] \]

system_of_ODEs

0.270

7869

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-y \\ y^{\prime }=x-2 y \end {array}\right ] \]

system_of_ODEs

0.292

7870

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+6 y \\ y^{\prime }=2 x+6 y \end {array}\right ] \]

system_of_ODEs

0.335

7871

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=4 x+5 y \end {array}\right ] \]

system_of_ODEs

0.472

7872

\[ {}\left [\begin {array}{c} x^{\prime }=x+y-5 t +2 \\ y^{\prime }=4 x-2 y-8 t -8 \end {array}\right ] \]

system_of_ODEs

0.533

7873

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-4 y \\ y^{\prime }=4 x-7 y \end {array}\right ] \]

system_of_ODEs

0.326

7874

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=4 x+y \end {array}\right ] \]

system_of_ODEs

0.320

7875

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+\sqrt {2}\, y \\ y^{\prime }=\sqrt {2}\, x-2 y \end {array}\right ] \]

system_of_ODEs

0.380

7876

\[ {}\left [\begin {array}{c} x^{\prime }=5 x+3 y \\ y^{\prime }=-6 x-4 y \end {array}\right ] \]

system_of_ODEs

0.313

7877

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y \\ y^{\prime }=-2 x-y \end {array}\right ] \]

system_of_ODEs

0.295

7878

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=y-x \end {array}\right ] \]

system_of_ODEs

0.339

7879

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-5 y \\ y^{\prime }=-x+2 y \end {array}\right ] \]

system_of_ODEs

0.528

7880

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y \\ y^{\prime }=-4 x+y \end {array}\right ] \]

system_of_ODEs

0.524

7881

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+2 y+z \\ y^{\prime }=-2 x-y+3 z \\ z^{\prime }=x+y+z \end {array}\right ] \]

system_of_ODEs

0.503

7882

\[ {}\left [\begin {array}{c} x^{\prime }=-x+y-z \\ y^{\prime }=2 x-y-4 z \\ z^{\prime }=3 x-y+z \end {array}\right ] \]

system_of_ODEs

8.153

7883

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y-4 t +1 \\ y^{\prime }=-x+2 y+3 t +4 \end {array}\right ] \]

system_of_ODEs

1.229

7884

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+y-t +3 \\ y^{\prime }=x+4 y+t -2 \end {array}\right ] \]

system_of_ODEs

0.881

7885

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x+y-t +3 \\ y^{\prime }=-x-5 y+t +1 \end {array}\right ] \]

system_of_ODEs

1.184

7886

\[ {}\left [\begin {array}{c} x^{\prime }=x y+1 \\ y^{\prime }=y-x \end {array}\right ] \]
i.c.

system_of_ODEs

0.053

7887

\[ {}\left [\begin {array}{c} x^{\prime }=t y+1 \\ y^{\prime }=-x t +y \end {array}\right ] \]
i.c.

system_of_ODEs

0.052

7888

\[ {}y^{\prime } = y^{2}-x \]
i.c.

[[_Riccati, _special]]

0.270

7889

\[ {}y^{\prime } = y^{2}-x \]
i.c.

[[_Riccati, _special]]

1.832

7890

\[ {}y^{\prime }-2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

0.609

7891

\[ {}y^{\prime }-2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

1.362

7892

\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \]
i.c.

[‘y=_G(x,y’)‘]

0.573

7893

\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \]
i.c.

[‘y=_G(x,y’)‘]

1.013

7894

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.343

7895

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.821

7896

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.539

7897

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.921

7898

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

0.573

7899

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.176

7900

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

0.583