# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}x \left (x^{2}-4\right ) y^{\prime } = 1
\] |
[_quadrature] |
✓ |
0.810 |
|
\[
{}\left (x +1\right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x
\] |
[_quadrature] |
✓ |
1.226 |
|
\[
{}y^{\prime } = 1+2 x y
\] |
[_linear] |
✓ |
1.078 |
|
\[
{}y^{\prime \prime }-5 y^{\prime }+4 y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
1.098 |
|
\[
{}y^{\prime } = \frac {2 x y^{2}}{1-x^{2} y}
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.658 |
|
\[
{}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0
\] |
[[_3rd_order, _missing_x]] |
✓ |
0.087 |
|
\[
{}x^{5} y^{\prime }+y^{5} = 0
\] |
[_separable] |
✓ |
5.582 |
|
\[
{}y^{\prime } = 4 x y
\] |
[_separable] |
✓ |
1.650 |
|
\[
{}y^{\prime }+\tan \left (x \right ) y = 0
\] |
[_separable] |
✓ |
1.800 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0
\] |
[_separable] |
✓ |
2.171 |
|
\[
{}y \ln \left (y\right )-y^{\prime } x = 0
\] |
[_separable] |
✓ |
1.839 |
|
\[
{}y^{\prime } x = \left (-4 x^{2}+1\right ) \tan \left (y\right )
\] |
[_separable] |
✓ |
2.161 |
|
\[
{}y^{\prime } \sin \left (y\right ) = x^{2}
\] |
[_separable] |
✓ |
1.521 |
|
\[
{}y^{\prime }-\tan \left (x \right ) y = 0
\] |
[_separable] |
✓ |
1.832 |
|
\[
{}x y y^{\prime } = -1+y
\] |
[_separable] |
✓ |
1.666 |
|
\[
{}x y^{2}-x^{2} y^{\prime } = 0
\] |
[_separable] |
✓ |
1.638 |
|
\[
{}y y^{\prime } = x +1
\] |
[_separable] |
✓ |
3.466 |
|
\[
{}x^{2} y^{\prime } = y
\] |
[_separable] |
✓ |
1.881 |
|
\[
{}\frac {y^{\prime }}{x^{2}+1} = \frac {x}{y}
\] |
[_separable] |
✓ |
2.064 |
|
\[
{}y^{2} y^{\prime } = x +2
\] |
[_separable] |
✓ |
2.994 |
|
\[
{}y^{\prime } = x^{2} y^{2}
\] |
[_separable] |
✓ |
2.588 |
|
\[
{}\left (1+y\right ) y^{\prime } = -x^{2}+1
\] |
[_separable] |
✓ |
2.049 |
|
\[
{}\frac {y^{\prime \prime }}{y^{\prime }} = x^{2}
\] |
[[_2nd_order, _missing_y]] |
✓ |
0.632 |
|
\[
{}y^{\prime \prime } y^{\prime } = x \left (x +1\right )
\] |
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]] |
✓ |
1.487 |
|
\[
{}y^{\prime }-x y = 0
\] |
[_separable] |
✓ |
0.248 |
|
\[
{}y^{\prime }+x y = x
\] |
[_separable] |
✓ |
0.451 |
|
\[
{}y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}}
\] |
[_linear] |
✓ |
0.284 |
|
\[
{}y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.279 |
|
\[
{}2 y-x^{3} = y^{\prime } x
\] |
[_linear] |
✓ |
0.236 |
|
\[
{}y^{\prime }+2 x y = 0
\] |
[_separable] |
✓ |
0.239 |
|
\[
{}y^{\prime } x -3 y = x^{4}
\] |
[_linear] |
✓ |
0.232 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \left (x \right )
\] |
[_linear] |
✓ |
0.271 |
|
\[
{}y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right )
\] |
[_linear] |
✓ |
0.299 |
|
\[
{}y-x +x y \cot \left (x \right )+y^{\prime } x = 0
\] |
[_linear] |
✓ |
0.313 |
|
\[
{}y^{\prime }-x y = 0
\] |
[_separable] |
✓ |
0.382 |
|
\[
{}y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}}
\] |
[_linear] |
✓ |
0.440 |
|
\[
{}x \ln \left (x \right ) y^{\prime }+y = 3 x^{3}
\] |
[_linear] |
✗ |
0.245 |
|
\[
{}y^{\prime }-\frac {y}{x} = x^{2}
\] |
[_linear] |
✓ |
0.365 |
|
\[
{}y^{\prime }+4 y = {\mathrm e}^{-x}
\] |
[[_linear, ‘class A‘]] |
✓ |
0.449 |
|
\[
{}x^{2} y^{\prime }+x y = 2 x
\] |
[_separable] |
✓ |
0.394 |
|
\[
{}y^{\prime } x +y = x^{4} y^{3}
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
2.617 |
|
\[
{}x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right )
\] |
[_Bernoulli] |
✓ |
56.969 |
|
\[
{}y^{\prime } x +y = x y^{2}
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
1.523 |
|
\[
{}y^{\prime }+x y = x y^{4}
\] |
[_separable] |
✓ |
2.694 |
|
\[
{}\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2}
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
1.225 |
|
\[
{}y-y^{\prime } x = y^{\prime } y^{2} {\mathrm e}^{y}
\] |
[[_1st_order, _with_linear_symmetries]] |
✓ |
1.338 |
|
\[
{}y^{\prime } x +2 = x^{3} \left (-1+y\right ) y^{\prime }
\] |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]] |
✓ |
2.340 |
|
\[
{}y^{\prime } x = 2 x^{2} y+y \ln \left (x \right )
\] |
[_separable] |
✓ |
1.927 |
|
\[
{}y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right )
\] |
[_linear] |
✓ |
3.164 |
|
\[
{}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.653 |
|
\[
{}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0
\] |
[‘y=_G(x,y’)‘] |
✓ |
39.929 |
|
\[
{}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0
\] |
[_exact, _rational] |
✓ |
1.254 |
|
\[
{}2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime }
\] |
[_rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✗ |
1.460 |
|
\[
{}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
2.170 |
|
\[
{}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
2.851 |
|
\[
{}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right )
\] |
[_exact] |
✓ |
29.921 |
|
\[
{}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0
\] |
[_separable] |
✓ |
0.345 |
|
\[
{}1+y+\left (1-x \right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.880 |
|
\[
{}2 x y^{3}+\cos \left (x \right ) y+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]] |
✓ |
40.657 |
|
\[
{}\frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} = 1
\] |
[_exact, _rational, _Riccati] |
✓ |
1.537 |
|
\[
{}2 x y^{4}+\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
2.701 |
|
\[
{}\frac {y^{\prime } x +y}{1-x^{2} y^{2}}+x = 0
\] |
[_exact, _rational, _Riccati] |
✓ |
1.807 |
|
\[
{}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime }
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
4.697 |
|
\[
{}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
1.855 |
|
\[
{}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0
\] |
[_exact] |
✓ |
52.441 |
|
\[
{}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0
\] |
[_exact, _Bernoulli] |
✓ |
0.540 |
|
\[
{}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0
\] |
[_separable] |
✓ |
1.733 |
|
\[
{}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0
\] |
[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
1.541 |
|
\[
{}\frac {y-y^{\prime } x}{\left (x +y\right )^{2}}+y^{\prime } = 1
\] |
[[_1st_order, _with_linear_symmetries], _exact, _rational] |
✓ |
2.941 |
|
\[
{}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
0.732 |
|
\[
{}x^{2}-2 y^{2}+x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
4.715 |
|
\[
{}x^{2} y^{\prime }-3 x y-2 y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
2.919 |
|
\[
{}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
15.428 |
|
\[
{}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
5.300 |
|
\[
{}y^{\prime } x = y+2 x \,{\mathrm e}^{-\frac {y}{x}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
30.148 |
|
\[
{}x -y-\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
4.871 |
|
\[
{}y^{\prime } x = 2 x -6 y
\] |
[_linear] |
✓ |
2.516 |
|
\[
{}y^{\prime } x = \sqrt {x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
8.617 |
|
\[
{}x^{2} y^{\prime } = y^{2}+2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
2.717 |
|
\[
{}x^{3}+y^{3}-x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
8.200 |
|
\[
{}y^{\prime } = \frac {x +y+4}{x -y-6}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.622 |
|
\[
{}y^{\prime } = \frac {x +y+4}{x +y-6}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
1.765 |
|
\[
{}2 x -2 y+\left (-1+y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
2.073 |
|
\[
{}y^{\prime } = \frac {x +y-1}{x +4 y+2}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
12.415 |
|
\[
{}2 x +3 y-1-4 \left (x +1\right ) y^{\prime } = 0
\] |
[_linear] |
✓ |
1.999 |
|
\[
{}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y}
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
1.927 |
|
\[
{}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y}
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
2.581 |
|
\[
{}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y}
\] |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
1.756 |
|
\[
{}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
4.475 |
|
\[
{}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
3.796 |
|
\[
{}y^{\prime } = \frac {x^{2}-x y}{y^{2} \cos \left (\frac {x}{y}\right )}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
6.862 |
|
\[
{}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
4.767 |
|
\[
{}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
0.412 |
|
\[
{}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0
\] |
[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
0.461 |
|
\[
{}y^{\prime } x +y+3 x^{3} y^{4} y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
3.175 |
|
\[
{}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
0.444 |
|
\[
{}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
0.456 |
|
\[
{}y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational] |
✓ |
0.398 |
|
\[
{}x +3 y^{2}+2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
0.442 |
|
\[
{}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0
\] |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
0.385 |
|