2.2.77 Problems 7601 to 7700

Table 2.155: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7601

\[ {}y^{\prime }+2 x y = x \]

[_separable]

1.460

7602

\[ {}y^{\prime } x +y = 3 x^{3}-1 \]

[_linear]

1.242

7603

\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

[_separable]

1.646

7604

\[ {}y^{\prime }-\tan \left (x \right ) y = {\mathrm e}^{\sin \left (x \right )} \]

[_linear]

1.852

7605

\[ {}y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \]

[_linear]

2.515

7606

\[ {}y^{\prime }+\cos \left (x \right ) y = {\mathrm e}^{-\sin \left (x \right )} \]
i.c.

[_linear]

1.964

7607

\[ {}x^{2} y^{\prime }+2 x y = 1 \]

[_linear]

1.473

7608

\[ {}y^{\prime }+2 y = b \left (x \right ) \]

[[_linear, ‘class A‘]]

1.171

7609

\[ {}y^{\prime } = 1+y \]
i.c.

[_quadrature]

1.370

7610

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1.473

7611

\[ {}y^{\prime } = 1+y^{2} \]
i.c.

[_quadrature]

1.483

7612

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

2.415

7613

\[ {}3 y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

2.431

7614

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

2.375

7615

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

2.063

7616

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.135

7617

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

1.559

7618

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

[[_2nd_order, _missing_x]]

0.820

7619

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.715

7620

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.707

7621

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.988

7622

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.579

7623

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.626

7624

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.690

7625

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.694

7626

\[ {}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.918

7627

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.933

7628

\[ {}y^{\prime \prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

4.232

7629

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.969

7630

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.975

7631

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.288

7632

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.867

7633

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14.473

7634

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.657

7635

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.677

7636

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.051

7637

\[ {}4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.309

7638

\[ {}6 y^{\prime \prime }+5 y^{\prime }-6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

2.036

7639

\[ {}y^{\prime \prime }+\omega ^{2} y = A \cos \left (\omega x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.976

7640

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

[[_3rd_order, _missing_x]]

0.089

7641

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

[[_high_order, _missing_x]]

0.098

7642

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

[[_3rd_order, _missing_x]]

0.080

7643

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0 \]

[[_3rd_order, _missing_x]]

0.102

7644

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.089

7645

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

[[_high_order, _missing_x]]

0.088

7646

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_3rd_order, _missing_x]]

0.080

7647

\[ {}y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0 \]

[[_3rd_order, _missing_x]]

0.100

7648

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.139

7649

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.109

7650

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2.241

7651

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2.257

7652

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

[[_high_order, _missing_x]]

0.077

7653

\[ {}y^{\left (5\right )}+2 y = 0 \]

[[_high_order, _missing_x]]

0.159

7654

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

[[_high_order, _missing_x]]

0.085

7655

\[ {}y^{\prime \prime \prime }+y = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.161

7656

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0 \]

[[_3rd_order, _missing_x]]

0.104

7657

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

0.652

7658

\[ {}y^{\prime \prime \prime \prime }-k^{4} y = 0 \]
i.c.

[[_high_order, _missing_x]]

0.202

7659

\[ {}y^{\prime \prime \prime }-y = x \]

[[_3rd_order, _with_linear_symmetries]]

0.114

7660

\[ {}y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x} \]

[[_3rd_order, _with_linear_symmetries]]

0.505

7661

\[ {}y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.153

7662

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

[[_high_order, _with_linear_symmetries]]

0.140

7663

\[ {}y^{\prime \prime \prime \prime }-y = \cos \left (x \right ) \]

[[_high_order, _linear, _nonhomogeneous]]

0.528

7664

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.467

7665

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.904

7666

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.927

7667

\[ {}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.623

7668

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.896

7669

\[ {}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.987

7670

\[ {}y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.770

7671

\[ {}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.397

7672

\[ {}y^{\prime \prime \prime } = x^{2}+{\mathrm e}^{-x} \sin \left (x \right ) \]

[[_3rd_order, _quadrature]]

0.625

7673

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_3rd_order, _linear, _nonhomogeneous]]

0.158

7674

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2.213

7675

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.896

7676

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.437

7677

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 0 \]

[[_Emden, _Fowler]]

0.321

7678

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

0.322

7679

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.335

7680

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

0.345

7681

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

0.347

7682

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.340

7683

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.128

7684

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.317

7685

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

0.324

7686

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.702

7687

\[ {}y^{\prime \prime }-y^{\prime } x +y = 0 \]

[_Hermite]

0.492

7688

\[ {}y^{\prime \prime }+3 x^{2} y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.526

7689

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.472

7690

\[ {}y^{\prime \prime }+x^{3} y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.574

7691

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.398

7692

\[ {}y^{\prime \prime }+\left (x -1\right )^{2} y^{\prime }-\left (x -1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.544

7693

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

0.594

7694

\[ {}y^{\prime \prime }+y \,{\mathrm e}^{x} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.628

7695

\[ {}y^{\prime \prime \prime }-x y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.060

7696

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\alpha \left (\alpha +1\right ) y = 0 \]

[_Gegenbauer]

0.752

7697

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.644

7698

\[ {}y^{\prime \prime }-2 y^{\prime } x +2 \alpha y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.630

7699

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.042

7700

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

1.200