2.2.80 Problems 7901 to 8000

Table 2.161: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

7901

\[ {}x y^{\prime \prime }+y^{\prime }+x \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.785

7902

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (6 x^{2}-3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.073

7903

\[ {}x y^{\prime \prime }+y^{\prime } x +\left (x^{4}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.240

7904

\[ {}x \left (x -2\right )^{2} y^{\prime \prime }-2 \left (x -2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.004

7905

\[ {}x \left (x -2\right )^{2} y^{\prime \prime }-2 \left (x -2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.888

7906

\[ {}2 x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.051

7907

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.240

7908

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }-2 y = 0 \]

[_Laguerre]

1.315

7909

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.025

7910

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +7\right ) y^{\prime }+2 \left (5+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.032

7911

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (x^{2}+3\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.922

7912

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x -18 y = 0 \]

[_Gegenbauer]

0.655

7913

\[ {}2 x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.017

7914

\[ {}y^{\prime \prime }+2 y^{\prime } x -8 y = 0 \]

[_erf]

0.567

7915

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }-\left (x^{2}+7\right ) y^{\prime }+4 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.951

7916

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (1+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.100

7917

\[ {}4 x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.146

7918

\[ {}x^{2} y^{\prime \prime }-x \left (x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.865

7919

\[ {}2 x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.990

7920

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}-3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.776

7921

\[ {}4 x^{2} y^{\prime \prime }-x^{2} y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.933

7922

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.599

7923

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.095

7924

\[ {}4 x^{2} y^{\prime \prime }+3 x^{2} y^{\prime }+\left (3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.003

7925

\[ {}x y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+2 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.734

7926

\[ {}4 x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-\left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.010

7927

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+5 \left (-x^{2}+1\right ) y^{\prime }-4 y x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.915

7928

\[ {}x^{2} y^{\prime \prime }+x \left (x +3\right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.912

7929

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+4\right ) y = 0 \]

[[_Bessel, _modified]]

1.171

7930

\[ {}x \left (1-2 x \right ) y^{\prime \prime }-2 \left (x +2\right ) y^{\prime }+18 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.048

7931

\[ {}x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.966

7932

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.915

7933

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]

[_separable]

1.195

7934

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]
i.c.

[_separable]

1.964

7935

\[ {}y^{\prime }+\frac {2 y}{x} = 5 x^{2} \]

[_linear]

1.201

7936

\[ {}t x^{\prime }+2 x = 4 \,{\mathrm e}^{t} \]

[_linear]

1.032

7937

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.213

7938

\[ {}y^{\prime }+\frac {2 y}{x} = 6 y^{2} x^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.832

7939

\[ {}y^{2}+\cos \left (x \right )+\left (2 y x +\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

0.245

7940

\[ {}y x -1+x^{2} y^{\prime } = 0 \]

[_linear]

0.183

7941

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

0.976

7942

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.925

7943

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.385

7944

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.333

7945

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+3 y \\ y^{\prime }=-2 x+5 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.510

7946

\[ {}\left [\begin {array}{c} x^{\prime }=-x+4 y \\ y^{\prime }=2 x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.523

7947

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y \\ y^{\prime }=-x+2 y+4 \,{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.571

7948

\[ {}\left [\begin {array}{c} x^{\prime }=6 x-7 y+10 \\ y^{\prime }=x-2 y-2 \,{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.557

7949

\[ {}y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x} \]

[_separable]

3.225

7950

\[ {}y^{\prime } = x \left (\cos \left (y\right )+y\right ) \]

[_separable]

1.459

7951

\[ {}y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \]

[_separable]

3.554

7952

\[ {}y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \]

[_separable]

17.122

7953

\[ {}y^{\prime } = 1+y \]

[_quadrature]

0.309

7954

\[ {}y^{\prime } = x +1 \]

[_quadrature]

0.215

7955

\[ {}y^{\prime } = x \]

[_quadrature]

0.210

7956

\[ {}y^{\prime } = y \]

[_quadrature]

0.434

7957

\[ {}y^{\prime } = 0 \]

[_quadrature]

0.323

7958

\[ {}y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \]

[_quadrature]

0.778

7959

\[ {}y^{\prime } = x +\frac {\sec \left (x \right ) y}{x} \]

[_linear]

10.546

7960

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

1.884

7961

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

1.435

7962

\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \]

[_separable]

1.575

7963

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

0.235

7964

\[ {}y^{\prime } = \frac {-y x -1}{4 x^{3} y-2 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.373

7965

\[ {}\frac {{y^{\prime }}^{2}}{4}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.299

7966

\[ {}y^{\prime } = \sqrt {\frac {1+y}{y^{2}}} \]
i.c.

[_quadrature]

1.933

7967

\[ {}y^{\prime } = \sqrt {1-x^{2}-y^{2}} \]

[‘y=_G(x,y’)‘]

0.674

7968

\[ {}y^{\prime }+\frac {y}{3} = \frac {\left (1-2 x \right ) y^{4}}{3} \]

[_Bernoulli]

1.816

7969

\[ {}y^{\prime } = \sqrt {y}+x \]

[[_1st_order, _with_linear_symmetries], _Chini]

4.699

7970

\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.171

7971

\[ {}y = y^{\prime } x +x^{2} {y^{\prime }}^{2} \]

[_separable]

0.816

7972

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

0.333

7973

\[ {}y^{\prime } x = 0 \]

[_quadrature]

0.338

7974

\[ {}\frac {y^{\prime }}{x +y} = 0 \]

[_quadrature]

0.327

7975

\[ {}\frac {y^{\prime }}{x} = 0 \]

[_quadrature]

0.323

7976

\[ {}y^{\prime } = 0 \]

[_quadrature]

0.321

7977

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.450

7978

\[ {}y^{\prime } = \frac {5 x^{2}-y x +y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.189

7979

\[ {}2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.134

7980

\[ {}y^{\prime } = \frac {1}{1-y} \]
i.c.

[_quadrature]

0.345

7981

\[ {}p^{\prime } = a p-b p^{2} \]
i.c.

[_quadrature]

1.205

7982

\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

1.514

7983

\[ {}x f^{\prime }-f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \]

[_Clairaut]

3.075

7984

\[ {}y^{\prime } x -2 y+b y^{2} = c \,x^{4} \]

[_rational, _Riccati]

1.442

7985

\[ {}y^{\prime } x -y+y^{2} = x^{{2}/{3}} \]

[_rational, _Riccati]

11.917

7986

\[ {}u^{\prime }+u^{2} = \frac {1}{x^{{4}/{5}}} \]

[_rational, _Riccati]

0.294

7987

\[ {}y y^{\prime }-y = x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.648

7988

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.770

7989

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.595

7990

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \]

[[_2nd_order, _missing_x]]

8.563

7991

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

73.807

7992

\[ {}y = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.316

7993

\[ {}y y^{\prime } = 1-x {y^{\prime }}^{3} \]

[_dAlembert]

0.205

7994

\[ {}f^{\prime } = \frac {1}{f} \]

[_quadrature]

0.366

7995

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

1.098

7996

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

1.257

7997

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1.719

7998

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.790

7999

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.968

8000

\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.596