| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime \prime }+y&=x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
4.974 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x}+6 x -5 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
84.378 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sinh \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
9.905 |
|
| \begin{align*}
y^{\prime \prime }+y&=2 \sin \left (x \right )+4 \cos \left (x \right ) x \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.443 |
|
| \begin{align*}
y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
80.803 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }&=9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
5.582 |
|
| \begin{align*}
y y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 5 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
1.103 |
|
| \begin{align*}
y y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 2 \\
y^{\prime }\left (0\right ) &= -2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
0.934 |
|
| \begin{align*}
y y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
1.013 |
|
| \begin{align*}
y y^{\prime }+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✗ |
✗ |
1.387 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime } x&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
1.464 |
|
| \begin{align*}
2 y y^{\prime \prime }&={y^{\prime }}^{2} \\
\end{align*} |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.711 |
|
| \begin{align*}
y^{\prime \prime } x&=y^{\prime }+{y^{\prime }}^{3} \\
\end{align*} |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
✓ |
✓ |
✓ |
3.961 |
|
| \begin{align*}
{y^{\prime \prime }}^{2}&=k^{2} \left (1+{y^{\prime }}^{2}\right ) \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
85.933 |
|
| \begin{align*}
k&=\frac {y^{\prime \prime }}{\left (1+y^{\prime }\right )^{{3}/{2}}} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]] |
✓ |
✓ |
✓ |
✗ |
448.409 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
2.803 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\
\end{align*} |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.836 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
5.037 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +6 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
2.870 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=8 x^{4} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.618 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x -y&=x -\frac {1}{x} \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.505 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=2 x^{3} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
6.086 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=6 x^{2} \ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
4.635 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y&=3 x^{2} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.962 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +y&=2 x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.850 |
|
| \begin{align*}
\left (-x +2\right ) x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.116 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.097 |
|
| \begin{align*}
y^{\prime \prime } x -2 \left (x +1\right ) y^{\prime }+\left (2+x \right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.109 |
|
| \begin{align*}
3 y^{\prime \prime } x -2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.112 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.114 |
|
| \begin{align*}
x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.118 |
|
| \begin{align*}
x^{2} y^{\prime }-y x&=\frac {1}{x} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.180 |
|
| \begin{align*}
x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.000 |
|
| \begin{align*}
y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.058 |
|
| \begin{align*}
r^{\prime \prime }-6 r^{\prime }+9 r&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.788 |
|
| \begin{align*}
2 x -y \sin \left (2 x \right )&=\left (\sin \left (x \right )^{2}-2 y\right ) y^{\prime } \\
\end{align*} |
[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✗ |
4.646 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+2 y&=10 \,{\mathrm e}^{x}+6 \cos \left (x \right ) {\mathrm e}^{-x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
75.981 |
|
| \begin{align*}
3 x^{3} y^{2} y^{\prime }-x^{2} y^{3}&=1 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.608 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.257 |
|
| \begin{align*}
y^{\prime }-2 y-y^{2} {\mathrm e}^{3 x}&=0 \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.777 |
|
| \begin{align*}
u \left (1-v \right )+v^{2} \left (1-u\right ) u^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.460 |
|
| \begin{align*}
y+2 x -y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.551 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime }&=4 x \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
2.413 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=26 \,{\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
48.133 |
|
| \begin{align*}
5 y+4 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
27.250 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=6 \,{\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
23.373 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
40.691 |
|
| \begin{align*}
\left (2 x +y\right ) y^{\prime }-x +2 y&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
5.839 |
|
| \begin{align*}
\left (x \cos \left (y\right )-{\mathrm e}^{-\sin \left (y\right )}\right ) y^{\prime }+1&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]] |
✓ |
✓ |
✓ |
✓ |
2.706 |
|
| \begin{align*}
\sin \left (x \right )^{2} y^{\prime }+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right )&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.893 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime }+5 y&=5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
73.623 |
|
| \begin{align*}
y^{\prime }+y x&=\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.707 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y&=0 \\
\end{align*} |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.073 |
|
| \begin{align*}
\sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2}&=r \cos \left (\theta \right )^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.359 |
|
| \begin{align*}
x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )&=y y^{\prime } \\
\end{align*} |
[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
1.066 |
|
| \begin{align*}
3 x^{2} y+x^{3} y^{\prime }&=0 \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.231 |
|
| \begin{align*}
-y+y^{\prime } x&=x^{2} \\
y \left (2\right ) &= 6 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.788 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }-6 y&=6 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 4 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
1.787 |
|
| \begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}+4&=0 \\
y \left (1\right ) &= 3 \\
y^{\prime }\left (1\right ) &= 0 \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
✓ |
✓ |
✗ |
2.315 |
|
| \begin{align*}
y^{\prime } x&=y x +y \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✗ |
0.268 |
|
| \begin{align*}
y^{\prime } x&=y x +y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.250 |
|
| \begin{align*}
y^{\prime }&=3 x^{2} y \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.257 |
|
| \begin{align*}
y^{\prime }&=3 x^{2} y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.296 |
|
| \begin{align*}
y^{\prime } x&=y \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✗ |
0.194 |
|
| \begin{align*}
y^{\prime } x&=y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.062 |
|
| \begin{align*}
y^{\prime \prime }&=-4 y \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.307 |
|
| \begin{align*}
y^{\prime \prime }&=-4 y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.492 |
|
| \begin{align*}
y^{\prime \prime }&=y \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.265 |
|
| \begin{align*}
y^{\prime \prime }&=y \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
2.226 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.415 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
4.364 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.519 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
2.509 |
|
| \begin{align*}
\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.754 |
|
| \begin{align*}
\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
26.082 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
15.083 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.386 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.778 |
|
| \begin{align*}
y^{\prime }-\sin \left (x +y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
1.637 |
|
| \begin{align*}
y^{\prime }&=4 y^{2}-3 y+1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.387 |
|
| \begin{align*}
s^{\prime }&=t \ln \left (s^{2 t}\right )+8 t^{2} \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✓ |
✗ |
3.889 |
|
| \begin{align*}
y^{\prime }&=\frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.432 |
|
| \begin{align*}
\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.138 |
|
| \begin{align*}
s^{2}+s^{\prime }&=\frac {s+1}{s t} \\
\end{align*} |
[_rational, [_Abel, ‘2nd type‘, ‘class C‘]] |
✗ |
✗ |
✗ |
✗ |
9.163 |
|
| \begin{align*}
y^{\prime } x&=\frac {1}{y^{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.511 |
|
| \begin{align*}
x^{\prime }&=3 t^{2} x \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.350 |
|
| \begin{align*}
x^{\prime }&=\frac {t \,{\mathrm e}^{-t -2 x}}{x} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.394 |
|
| \begin{align*}
y^{\prime }&=\frac {x}{y^{2} \sqrt {x +1}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.493 |
|
| \begin{align*}
x v^{\prime }&=\frac {1-4 v^{2}}{3 v} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.642 |
|
| \begin{align*}
y^{\prime }&=\frac {\sec \left (y\right )^{2}}{x^{2}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.612 |
|
| \begin{align*}
y^{\prime }&=3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.906 |
|
| \begin{align*}
x^{\prime }-x^{3}&=x \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.882 |
|
| \begin{align*}
x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.243 |
|
| \begin{align*}
\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right )&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.621 |
|
| \begin{align*}
y^{\prime }&=\left (1+y^{2}\right ) \tan \left (x \right ) \\
y \left (0\right ) &= \sqrt {3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
5.324 |
|
| \begin{align*}
y^{\prime }&=x^{3} \left (1-y\right ) \\
y \left (0\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.415 |
|
| \begin{align*}
\frac {y^{\prime }}{2}&=\sqrt {1+y}\, \cos \left (x \right ) \\
y \left (\pi \right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
3.844 |
|
| \begin{align*}
x^{2} y^{\prime }&=\frac {4 x^{2}-x -2}{\left (x +1\right ) \left (1+y\right )} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.591 |
|
| \begin{align*}
\frac {y^{\prime }}{\theta }&=\frac {y \sin \left (\theta \right )}{y^{2}+1} \\
y \left (\pi \right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
4.514 |
|