2.2.74 Problems 7301 to 7400

Table 2.161: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

7301

\begin{align*} y^{\prime \prime }+y&=x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.974

7302

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x}+6 x -5 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

84.378

7303

\begin{align*} y^{\prime \prime }-y&=\sinh \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

9.905

7304

\begin{align*} y^{\prime \prime }+y&=2 \sin \left (x \right )+4 \cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.443

7305

\begin{align*} y+2 y^{\prime }+y^{\prime \prime }&=4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

80.803

7306

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _missing_y]]

5.582

7307

\begin{align*} y y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 5 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.103

7308

\begin{align*} y y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 2 \\ y^{\prime }\left (0\right ) &= -2 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.934

7309

\begin{align*} y y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.013

7310

\begin{align*} y y^{\prime }+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.387

7311

\begin{align*} y^{\prime \prime }+2 y^{\prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

1.464

7312

\begin{align*} 2 y y^{\prime \prime }&={y^{\prime }}^{2} \\ \end{align*}

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.711

7313

\begin{align*} y^{\prime \prime } x&=y^{\prime }+{y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

3.961

7314

\begin{align*} {y^{\prime \prime }}^{2}&=k^{2} \left (1+{y^{\prime }}^{2}\right ) \\ \end{align*}

[[_2nd_order, _missing_x]]

85.933

7315

\begin{align*} k&=\frac {y^{\prime \prime }}{\left (1+y^{\prime }\right )^{{3}/{2}}} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

448.409

7316

\begin{align*} x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.803

7317

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.836

7318

\begin{align*} x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

5.037

7319

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +6 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.870

7320

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -16 y&=8 x^{4} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.618

7321

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x -y&=x -\frac {1}{x} \\ \end{align*}

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3.505

7322

\begin{align*} x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y&=2 x^{3} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

6.086

7323

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=6 x^{2} \ln \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.635

7324

\begin{align*} x^{2} y^{\prime \prime }+y&=3 x^{2} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.962

7325

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=2 x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.850

7326

\begin{align*} \left (-x +2\right ) x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.116

7327

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.097

7328

\begin{align*} y^{\prime \prime } x -2 \left (x +1\right ) y^{\prime }+\left (2+x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.109

7329

\begin{align*} 3 y^{\prime \prime } x -2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.112

7330

\begin{align*} x^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y&=0 \\ \end{align*}

[[_2nd_order, _exact, _linear, _homogeneous]]

0.114

7331

\begin{align*} x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

0.118

7332

\begin{align*} x^{2} y^{\prime }-y x&=\frac {1}{x} \\ \end{align*}

[_linear]

2.180

7333

\begin{align*} x \ln \left (y\right ) y^{\prime }-y \ln \left (x \right )&=0 \\ \end{align*}

[_separable]

3.000

7334

\begin{align*} y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.058

7335

\begin{align*} r^{\prime \prime }-6 r^{\prime }+9 r&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.788

7336

\begin{align*} 2 x -y \sin \left (2 x \right )&=\left (\sin \left (x \right )^{2}-2 y\right ) y^{\prime } \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4.646

7337

\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=10 \,{\mathrm e}^{x}+6 \cos \left (x \right ) {\mathrm e}^{-x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

75.981

7338

\begin{align*} 3 x^{3} y^{2} y^{\prime }-x^{2} y^{3}&=1 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

3.608

7339

\begin{align*} x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

3.257

7340

\begin{align*} y^{\prime }-2 y-y^{2} {\mathrm e}^{3 x}&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Bernoulli]

1.777

7341

\begin{align*} u \left (1-v \right )+v^{2} \left (1-u\right ) u^{\prime }&=0 \\ \end{align*}

[_separable]

4.460

7342

\begin{align*} y+2 x -y^{\prime } x&=0 \\ \end{align*}

[_linear]

2.551

7343

\begin{align*} y^{\prime \prime } x +y^{\prime }&=4 x \\ \end{align*}

[[_2nd_order, _missing_y]]

2.413

7344

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=26 \,{\mathrm e}^{3 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

48.133

7345

\begin{align*} 5 y+4 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

27.250

7346

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=6 \,{\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

23.373

7347

\begin{align*} 6 y-5 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

40.691

7348

\begin{align*} \left (2 x +y\right ) y^{\prime }-x +2 y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.839

7349

\begin{align*} \left (x \cos \left (y\right )-{\mathrm e}^{-\sin \left (y\right )}\right ) y^{\prime }+1&=0 \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.706

7350

\begin{align*} \sin \left (x \right )^{2} y^{\prime }+\sin \left (x \right )^{2}+\left (x +y\right ) \sin \left (2 x \right )&=0 \\ \end{align*}

[_linear]

5.893

7351

\begin{align*} y^{\prime \prime }-2 y^{\prime }+5 y&=5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

73.623

7352

\begin{align*} y^{\prime }+y x&=\frac {x}{y} \\ \end{align*}

[_separable]

2.707

7353

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.073

7354

\begin{align*} \sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2}&=r \cos \left (\theta \right )^{2} \\ \end{align*}

[_linear]

3.359

7355

\begin{align*} x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )&=y y^{\prime } \\ \end{align*}

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1.066

7356

\begin{align*} 3 x^{2} y+x^{3} y^{\prime }&=0 \\ y \left (1\right ) &= 2 \\ \end{align*}

[_separable]

3.231

7357

\begin{align*} -y+y^{\prime } x&=x^{2} \\ y \left (2\right ) &= 6 \\ \end{align*}

[_linear]

1.788

7358

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=6 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 4 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.787

7359

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}+4&=0 \\ y \left (1\right ) &= 3 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

2.315

7360

\begin{align*} y^{\prime } x&=y x +y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.268

7361

\begin{align*} y^{\prime } x&=y x +y \\ \end{align*}

[_separable]

1.250

7362

\begin{align*} y^{\prime }&=3 x^{2} y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.257

7363

\begin{align*} y^{\prime }&=3 x^{2} y \\ \end{align*}

[_separable]

2.296

7364

\begin{align*} y^{\prime } x&=y \\ \end{align*}
Series expansion around \(x=0\).

[_separable]

0.194

7365

\begin{align*} y^{\prime } x&=y \\ \end{align*}

[_separable]

2.062

7366

\begin{align*} y^{\prime \prime }&=-4 y \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.307

7367

\begin{align*} y^{\prime \prime }&=-4 y \\ \end{align*}

[[_2nd_order, _missing_x]]

3.492

7368

\begin{align*} y^{\prime \prime }&=y \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.265

7369

\begin{align*} y^{\prime \prime }&=y \\ \end{align*}

[[_2nd_order, _missing_x]]

2.226

7370

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _missing_x]]

0.415

7371

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.364

7372

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_Emden, _Fowler]]

0.519

7373

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y&=0 \\ \end{align*}

[[_Emden, _Fowler]]

2.509

7374

\begin{align*} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.754

7375

\begin{align*} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

26.082

7376

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.266

7377

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

15.083

7378

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

[[_2nd_order, _with_linear_symmetries]]

0.386

7379

\begin{align*} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.778

7380

\begin{align*} y^{\prime }-\sin \left (x +y\right )&=0 \\ \end{align*}

[[_homogeneous, ‘class C‘], _dAlembert]

1.637

7381

\begin{align*} y^{\prime }&=4 y^{2}-3 y+1 \\ \end{align*}

[_quadrature]

0.387

7382

\begin{align*} s^{\prime }&=t \ln \left (s^{2 t}\right )+8 t^{2} \\ \end{align*}

[‘y=_G(x,y’)‘]

3.889

7383

\begin{align*} y^{\prime }&=\frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \\ \end{align*}

[_separable]

2.432

7384

\begin{align*} \left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x&=0 \\ \end{align*}

[_separable]

2.138

7385

\begin{align*} s^{2}+s^{\prime }&=\frac {s+1}{s t} \\ \end{align*}

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

9.163

7386

\begin{align*} y^{\prime } x&=\frac {1}{y^{3}} \\ \end{align*}

[_separable]

2.511

7387

\begin{align*} x^{\prime }&=3 t^{2} x \\ \end{align*}

[_separable]

2.350

7388

\begin{align*} x^{\prime }&=\frac {t \,{\mathrm e}^{-t -2 x}}{x} \\ \end{align*}

[_separable]

2.394

7389

\begin{align*} y^{\prime }&=\frac {x}{y^{2} \sqrt {x +1}} \\ \end{align*}

[_separable]

2.493

7390

\begin{align*} x v^{\prime }&=\frac {1-4 v^{2}}{3 v} \\ \end{align*}

[_separable]

6.642

7391

\begin{align*} y^{\prime }&=\frac {\sec \left (y\right )^{2}}{x^{2}+1} \\ \end{align*}

[_separable]

3.612

7392

\begin{align*} y^{\prime }&=3 x^{2} \left (1+y^{2}\right )^{{3}/{2}} \\ \end{align*}

[_separable]

9.906

7393

\begin{align*} x^{\prime }-x^{3}&=x \\ \end{align*}

[_quadrature]

1.882

7394

\begin{align*} x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime }&=0 \\ \end{align*}

[_separable]

4.243

7395

\begin{align*} \frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right )&=0 \\ \end{align*}

[_separable]

3.621

7396

\begin{align*} y^{\prime }&=\left (1+y^{2}\right ) \tan \left (x \right ) \\ y \left (0\right ) &= \sqrt {3} \\ \end{align*}

[_separable]

5.324

7397

\begin{align*} y^{\prime }&=x^{3} \left (1-y\right ) \\ y \left (0\right ) &= 3 \\ \end{align*}

[_separable]

2.415

7398

\begin{align*} \frac {y^{\prime }}{2}&=\sqrt {1+y}\, \cos \left (x \right ) \\ y \left (\pi \right ) &= 0 \\ \end{align*}

[_separable]

3.844

7399

\begin{align*} x^{2} y^{\prime }&=\frac {4 x^{2}-x -2}{\left (x +1\right ) \left (1+y\right )} \\ y \left (1\right ) &= 1 \\ \end{align*}

[_separable]

3.591

7400

\begin{align*} \frac {y^{\prime }}{\theta }&=\frac {y \sin \left (\theta \right )}{y^{2}+1} \\ y \left (\pi \right ) &= 1 \\ \end{align*}

[_separable]

4.514