2.2.81 Problems 8001 to 8100

Table 2.163: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8001

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.205

8002

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

1.121

8003

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

1.464

8004

\[ {}y^{\prime \prime } = f \left (t \right ) \]

[[_2nd_order, _quadrature]]

0.664

8005

\[ {}y^{\prime \prime } = k \]

[[_2nd_order, _quadrature]]

1.599

8006

\[ {}y^{\prime } = -4 \sin \left (x -y\right )-4 \]

[[_homogeneous, ‘class C‘], _dAlembert]

57.517

8007

\[ {}y^{\prime }+\sin \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.301

8008

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

[[_2nd_order, _quadrature]]

1.467

8009

\[ {}y y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

0.128

8010

\[ {}y y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.512

8011

\[ {}y y^{\prime \prime } = x \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.120

8012

\[ {}y^{2} y^{\prime \prime } = x \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.076

8013

\[ {}y^{2} y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

0.126

8014

\[ {}3 y y^{\prime \prime } = \sin \left (x \right ) \]

[NONE]

0.133

8015

\[ {}3 y y^{\prime \prime }+y = 5 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

498.826

8016

\[ {}a y y^{\prime \prime }+b y = c \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.974

8017

\[ {}a y^{2} y^{\prime \prime }+b y^{2} = c \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.427

8018

\[ {}a y y^{\prime \prime }+b y = 0 \]

[[_2nd_order, _quadrature]]

0.597

8019

\[ {}\left [\begin {array}{c} x^{\prime }=9 x+4 y \\ y^{\prime }=-6 x-y \\ z^{\prime }=6 x+4 y+3 z \end {array}\right ] \]

system_of_ODEs

0.349

8020

\[ {}\left [\begin {array}{c} x^{\prime }=x-3 y \\ y^{\prime }=3 x+7 y \end {array}\right ] \]

system_of_ODEs

0.284

8021

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=2 x+5 y \end {array}\right ] \]

system_of_ODEs

0.282

8022

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+y \\ y^{\prime }=-4 x+3 y \end {array}\right ] \]

system_of_ODEs

0.297

8023

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=y \\ z^{\prime }=z \end {array}\right ] \]

system_of_ODEs

0.299

8024

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y-z \\ y^{\prime }=-x+2 z \\ z^{\prime }=-x-2 y+4 z \end {array}\right ] \]

system_of_ODEs

0.337

8025

\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

[_quadrature]

2.719

8026

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.277

8027

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

1.060

8028

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

[_separable]

113.050

8029

\[ {}y^{\prime } = x^{2}+y^{2} \]

[[_Riccati, _special]]

0.986

8030

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

0.586

8031

\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.961

8032

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

38.529

8033

\[ {}y^{\prime } = -1+x^{2}+y^{2} \]

[_Riccati]

1.514

8034

\[ {}y^{\prime } = 2 y \left (x \sqrt {y}-1\right ) \]
i.c.

[_Bernoulli]

1.230

8035

\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

68.110

8036

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.719

8037

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.599

8038

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.028

8039

\[ {}y^{\prime \prime }-y y^{\prime } = 2 x \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

4.686

8040

\[ {}y^{\prime }-y^{2}-x -x^{2} = 0 \]

[_Riccati]

4.658

8041

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7.084

8042

\[ {}y^{\prime \prime }-y^{\prime } x -y x -2 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7.047

8043

\[ {}y^{\prime \prime }-y^{\prime } x -y x -3 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7.073

8044

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x^{2}-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.479

8045

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.616

8046

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x^{4}-6 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.585

8047

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x^{5}+24 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.579

8048

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7.015

8049

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.450

8050

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.532

8051

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.501

8052

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.498

8053

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.514

8054

\[ {}y^{\prime \prime }-y^{\prime }-y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.356

8055

\[ {}y^{\prime \prime }-y^{\prime }-y x -x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.192

8056

\[ {}y^{\prime \prime }-y^{\prime }-y x -x^{2}-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.327

8057

\[ {}y^{\prime \prime }-y^{\prime }-y x -x^{2}-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.329

8058

\[ {}y^{\prime \prime }-2 y^{\prime }-y x -x^{2}-2 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.329

8059

\[ {}y^{\prime \prime }-4 y^{\prime }-y x -x^{2}-4 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.335

8060

\[ {}y^{\prime \prime }-y^{\prime }-y x -x^{3}+1 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.232

8061

\[ {}y^{\prime \prime }-2 y^{\prime }-y x -x^{3}-x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.327

8062

\[ {}y^{\prime \prime }-y^{\prime }-y x -x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.329

8063

\[ {}y^{\prime \prime }-2 y^{\prime }-y x -x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.334

8064

\[ {}y^{\prime \prime }-4 y^{\prime }-y x -x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.333

8065

\[ {}y^{\prime \prime }-6 y^{\prime }-y x -x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.336

8066

\[ {}y^{\prime \prime }-8 y^{\prime }-y x -x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.336

8067

\[ {}y^{\prime \prime }-y^{\prime }-y x -x^{4}+3 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.339

8068

\[ {}y^{\prime \prime }-y^{\prime }-y x -x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.200

8069

\[ {}y^{\prime \prime }-y x -x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.901

8070

\[ {}y^{\prime \prime }-y x -x^{6}+64 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.648

8071

\[ {}y^{\prime \prime }-y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.394

8072

\[ {}y^{\prime \prime }-y x -x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5.809

8073

\[ {}y^{\prime \prime }-y x -x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.532

8074

\[ {}y^{\prime \prime }-y x -x^{6}-x^{3}+42 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

9.618

8075

\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.816

8076

\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

66.480

8077

\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.208

8078

\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.008

8079

\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.151

8080

\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19.392

8081

\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

409.181

8082

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.612

8083

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.549

8084

\[ {}y^{\prime \prime }-y^{\prime } x -y x -x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6.862

8085

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-y x -x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.650

8086

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.573

8087

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.560

8088

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-y x -x^{2}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

131.480

8089

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.063

8090

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

395.854

8091

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-y x -x^{3}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.546

8092

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.552

8093

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.565

8094

\[ {}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.041

8095

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

[[_2nd_order, _missing_x]]

0.992

8096

\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]
i.c.

[_quadrature]

1.032

8097

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.201

8098

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.214

8099

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.453

8100

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.277