2.2.87 Problems 8601 to 8700

Table 2.175: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8601

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.888

8602

\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.732

8603

\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.758

8604

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.232

8605

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.934

8606

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.898

8607

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.083

8608

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.991

8609

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.952

8610

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = \cos \left (x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.000

8611

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = x^{3}+x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.005

8612

\[ {}\cos \left (x \right ) y^{\prime \prime }+2 x y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.771

8613

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.819

8614

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-x y = 0 \]

[[_Emden, _Fowler]]

0.735

8615

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.822

8616

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.226

8617

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.840

8618

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}-8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.250

8619

\[ {}x^{2} y^{\prime \prime }-9 x y^{\prime }+25 y = 0 \]

[[_Emden, _Fowler]]

0.713

8620

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.830

8621

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.886

8622

\[ {}x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.872

8623

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.799

8624

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler]]

0.624

8625

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \]

[[_Emden, _Fowler]]

0.734

8626

\[ {}x^{2} y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

1.115

8627

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.713

8628

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

3.555

8629

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.439

8630

\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.929

8631

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.750

8632

\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.246

8633

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

1.206

8634

\[ {}y^{\prime \prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.507

8635

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+2 t +1 \\ y^{\prime }=5 x+y+3 t -1 \end {array}\right ] \]

system_of_ODEs

0.761

8636

\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

97.388

8637

\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.595

8638

\[ {}y^{\prime \prime } = A y^{{2}/{3}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

163.740

8639

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.754

8640

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.230

8641

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.764

8642

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.198

8643

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.999

8644

\[ {}y^{\prime }+y = \frac {1}{x} \]

[[_linear, ‘class A‘]]

0.223

8645

\[ {}y^{\prime }+y = \frac {1}{x^{2}} \]

[[_linear, ‘class A‘]]

0.259

8646

\[ {}x y^{\prime }+y = 0 \]

[_separable]

0.434

8647

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

0.141

8648

\[ {}y^{\prime \prime } = \frac {1}{x} \]

[[_2nd_order, _quadrature]]

0.061

8649

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{x} \]

[[_2nd_order, _missing_y]]

0.067

8650

\[ {}y^{\prime \prime }+y = \frac {1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.066

8651

\[ {}y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.070

8652

\[ {}h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \]

[_quadrature]

18.867

8653

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.743

8654

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.340

8655

\[ {}y^{\prime \prime }+y = {\mathrm e}^{a \cos \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.928

8656

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

1.395

8657

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.872

8658

\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

[_separable]

1.179

8659

\[ {}y^{\prime \prime }+{\mathrm e}^{y} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

14.495

8660

\[ {}y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.258

8661

\[ {}y^{\prime } = 0 \]

[_quadrature]

0.381

8662

\[ {}y^{\prime } = a \]

[_quadrature]

0.347

8663

\[ {}y^{\prime } = x \]

[_quadrature]

0.250

8664

\[ {}y^{\prime } = 1 \]

[_quadrature]

0.464

8665

\[ {}y^{\prime } = a x \]

[_quadrature]

0.176

8666

\[ {}y^{\prime } = a x y \]

[_separable]

0.822

8667

\[ {}y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

0.685

8668

\[ {}y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

0.791

8669

\[ {}y^{\prime } = y \]

[_quadrature]

0.944

8670

\[ {}y^{\prime } = b y \]

[_quadrature]

0.691

8671

\[ {}y^{\prime } = a x +b y^{2} \]

[[_Riccati, _special]]

1.037

8672

\[ {}c y^{\prime } = 0 \]

[_quadrature]

0.389

8673

\[ {}c y^{\prime } = a \]

[_quadrature]

0.349

8674

\[ {}c y^{\prime } = a x \]

[_quadrature]

0.197

8675

\[ {}c y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

0.773

8676

\[ {}c y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

0.802

8677

\[ {}c y^{\prime } = y \]

[_quadrature]

0.785

8678

\[ {}c y^{\prime } = b y \]

[_quadrature]

0.853

8679

\[ {}c y^{\prime } = a x +b y^{2} \]

[[_Riccati, _special]]

1.104

8680

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r} \]

[[_Riccati, _special]]

1.198

8681

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r x} \]

[_rational, _Riccati]

3.966

8682

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{r \,x^{2}} \]

[_rational, _Riccati]

5.901

8683

\[ {}c y^{\prime } = \frac {a x +b y^{2}}{y} \]

[_rational, _Bernoulli]

1.513

8684

\[ {}a \sin \left (x \right ) y x y^{\prime } = 0 \]

[_quadrature]

0.389

8685

\[ {}f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi = 0 \]

[_quadrature]

0.401

8686

\[ {}y^{\prime } = \sin \left (x \right )+y \]

[[_linear, ‘class A‘]]

1.196

8687

\[ {}y^{\prime } = \sin \left (x \right )+y^{2} \]

[_Riccati]

2.431

8688

\[ {}y^{\prime } = \cos \left (x \right )+\frac {y}{x} \]

[_linear]

1.137

8689

\[ {}y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x} \]

[_Riccati]

4.404

8690

\[ {}y^{\prime } = x +y+b y^{2} \]

[_Riccati]

1.191

8691

\[ {}x y^{\prime } = 0 \]

[_quadrature]

0.392

8692

\[ {}5 y^{\prime } = 0 \]

[_quadrature]

0.388

8693

\[ {}{\mathrm e} y^{\prime } = 0 \]

[_quadrature]

0.404

8694

\[ {}\pi y^{\prime } = 0 \]

[_quadrature]

0.413

8695

\[ {}\sin \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

0.427

8696

\[ {}f \left (x \right ) y^{\prime } = 0 \]

[_quadrature]

0.424

8697

\[ {}x y^{\prime } = 1 \]

[_quadrature]

0.293

8698

\[ {}x y^{\prime } = \sin \left (x \right ) \]

[_quadrature]

0.362

8699

\[ {}\left (x -1\right ) y^{\prime } = 0 \]

[_quadrature]

0.381

8700

\[ {}y^{\prime } y = 0 \]

[_quadrature]

0.382