2.2.80 Problems 7901 to 8000

Table 2.173: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

7901

\begin{align*} 3 x^{2}+y^{2}-2 y y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

0.233

7902

\begin{align*} y x -2 y^{2}-\left (x^{2}-3 y x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.621

7903

\begin{align*} x +y-\left (x -y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

0.401

7904

\begin{align*} 2 y-3 x y^{2}-y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.609

7905

\begin{align*} y+x \left (x^{2} y-1\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.317

7906

\begin{align*} y+x^{3} y+2 x^{2}+\left (x +4 y^{4} x +8 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational]

0.347

7907

\begin{align*} -y-{\mathrm e}^{x} x^{2}+y^{\prime } x&=0 \\ \end{align*}

[_linear]

0.186

7908

\begin{align*} 1+y^{2}&=\left (x^{2}+x \right ) y^{\prime } \\ \end{align*}

[_separable]

5.639

7909

\begin{align*} 2 y-x^{3}+y^{\prime } x&=0 \\ \end{align*}

[_linear]

0.159

7910

\begin{align*} y+\left (y^{2}-x \right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

0.969

7911

\begin{align*} 3 y^{3}-y x -\left (x^{2}+6 x y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

1.250

7912

\begin{align*} 3 y^{2} x^{2}+4 \left (x^{3} y-3\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

0.222

7913

\begin{align*} y \left (x +y\right )-x^{2} y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

0.195

7914

\begin{align*} 2 y+3 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.056

7915

\begin{align*} y \left (y^{2}-2 x^{2}\right )+x \left (2 y^{2}-x^{2}\right ) y^{\prime }&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

0.366

7916

\begin{align*} -y+y^{\prime } x&=0 \\ \end{align*}

[_separable]

0.125

7917

\begin{align*} y^{\prime }+y&=2 x +2 \\ \end{align*}

[[_linear, ‘class A‘]]

2.556

7918

\begin{align*} y^{\prime }-y&=y x \\ \end{align*}

[_separable]

4.586

7919

\begin{align*} -3 y-\left (x -2\right ) {\mathrm e}^{x}+y^{\prime } x&=0 \\ \end{align*}

[_linear]

4.684

7920

\begin{align*} i^{\prime }-6 i&=10 \sin \left (2 t \right ) \\ \end{align*}

[[_linear, ‘class A‘]]

2.659

7921

\begin{align*} y^{\prime }+y&=y^{2} {\mathrm e}^{x} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2.665

7922

\begin{align*} y+\left (y x +x -3 y\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

5.498

7923

\begin{align*} \left (2 s-{\mathrm e}^{2 t}\right ) s^{\prime }&=2 s \,{\mathrm e}^{2 t}-2 \cos \left (2 t \right ) \\ \end{align*}

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

9.136

7924

\begin{align*} y^{\prime } x +y-x^{3} y^{6}&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

10.186

7925

\begin{align*} r^{\prime }+2 r \cos \left (\theta \right )+\sin \left (2 \theta \right )&=0 \\ \end{align*}

[_linear]

2.994

7926

\begin{align*} y \left (1+y^{2}\right )&=2 \left (1-2 x y^{2}\right ) y^{\prime } \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

3.705

7927

\begin{align*} y y^{\prime }-x y^{2}+x&=0 \\ \end{align*}

[_separable]

6.672

7928

\begin{align*} \left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

5.312

7929

\begin{align*} 2 x^{\prime }-\frac {x}{y}+x^{3} \cos \left (y \right )&=0 \\ \end{align*}

[_Bernoulli]

10.101

7930

\begin{align*} y^{\prime } x&=y \left (1-x \tan \left (x \right )\right )+\cos \left (x \right ) x^{2} \\ \end{align*}

[_linear]

17.150

7931

\begin{align*} 2+y^{2}-\left (y x +2 y+y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

20.566

7932

\begin{align*} 1+y^{2}&=\left (\arctan \left (y\right )-x \right ) y^{\prime } \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

10.713

7933

\begin{align*} 2 x y^{5}-y+2 y^{\prime } x&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

11.312

7934

\begin{align*} 1+\sin \left (y\right )&=\left (2 y \cos \left (y\right )-x \left (\sec \left (y\right )+\tan \left (y\right )\right )\right ) y^{\prime } \\ \end{align*}

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

6.027

7935

\begin{align*} y^{\prime } x&=2 y+{\mathrm e}^{x} x^{3} \\ y \left (1\right ) &= 0 \\ \end{align*}

[_linear]

4.537

7936

\begin{align*} L i^{\prime }+R i&=E \sin \left (2 t \right ) \\ i \left (0\right ) &= 0 \\ \end{align*}

[[_linear, ‘class A‘]]

3.609

7937

\begin{align*} x^{2} y^{\prime } \cos \left (y\right )&=2 x \sin \left (y\right )-1 \\ \end{align*}

[‘y=_G(x,y’)‘]

4.233

7938

\begin{align*} 4 x^{2} y y^{\prime }&=3 x \left (3 y^{2}+2\right )+2 \left (3 y^{2}+2\right )^{3} \\ \end{align*}

[_rational]

18.145

7939

\begin{align*} x y^{3}-y^{3}-{\mathrm e}^{x} x^{2}+3 y^{\prime } y^{2} x&=0 \\ \end{align*}

[_Bernoulli]

4.605

7940

\begin{align*} y^{\prime }+x \left (x +y\right )&=x^{3} \left (x +y\right )^{3}-1 \\ \end{align*}

[_Abel]

6.068

7941

\begin{align*} y+{\mathrm e}^{y}-{\mathrm e}^{-x}+\left (1+{\mathrm e}^{y}\right ) y^{\prime }&=0 \\ \end{align*}

[‘y=_G(x,y’)‘]

3.718

7942

\begin{align*} x^{2} {y^{\prime }}^{2}+y y^{\prime } x -6 y^{2}&=0 \\ \end{align*}

[_separable]

0.171

7943

\begin{align*} x {y^{\prime }}^{2}+\left (y-1-x^{2}\right ) y^{\prime }-\left (-1+y\right ) x&=0 \\ \end{align*}

[_quadrature]

0.256

7944

\begin{align*} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.600

7945

\begin{align*} 3 x^{4} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

1.217

7946

\begin{align*} 8 y {y^{\prime }}^{2}-2 y^{\prime } x +y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.056

7947

\begin{align*} y^{2} {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

1.297

7948

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.373

7949

\begin{align*} 16 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

1.257

7950

\begin{align*} x {y^{\prime }}^{5}-y {y^{\prime }}^{4}+\left (x^{2}+1\right ) {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+\left (x +y^{2}\right ) y^{\prime }-y&=0 \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.459

7951

\begin{align*} x {y^{\prime }}^{2}-y y^{\prime }-y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.255

7952

\begin{align*} y&=2 y^{\prime } x +y^{2} {y^{\prime }}^{3} \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.761

7953

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

1.785

7954

\begin{align*} y&=x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.105

7955

\begin{align*} y&=2 y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \\ \end{align*}

[_quadrature]

15.205

7956

\begin{align*} y {y^{\prime }}^{2}-y^{\prime } x +3 y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.895

7957

\begin{align*} y&=y^{\prime } x -2 {y^{\prime }}^{2} \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.387

7958

\begin{align*} y^{2} {y^{\prime }}^{2}+3 y^{\prime } x -y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _rational]

1.216

7959

\begin{align*} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2}&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.543

7960

\begin{align*} x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y&=0 \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.736

7961

\begin{align*} \left (3 y-1\right )^{2} {y^{\prime }}^{2}&=4 y \\ \end{align*}

[_quadrature]

0.599

7962

\begin{align*} y&=-y^{\prime } x +x^{4} {y^{\prime }}^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational]

1.221

7963

\begin{align*} 2 y&={y^{\prime }}^{2}+4 y^{\prime } x \\ \end{align*}

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.639

7964

\begin{align*} y \left (3-4 y\right )^{2} {y^{\prime }}^{2}&=4-4 y \\ \end{align*}

[_quadrature]

1.599

7965

\begin{align*} {y^{\prime }}^{3}-4 x^{4} y^{\prime }+8 x^{3} y&=0 \\ \end{align*}

[[_1st_order, _with_linear_symmetries]]

0.606

7966

\begin{align*} \left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2}&=\left (y y^{\prime }+x \right )^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

154.943

7967

\begin{align*} y^{\prime \prime }+y^{\prime }-6 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.277

7968

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.080

7969

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&={\mathrm e}^{5 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

25.591

7970

\begin{align*} y^{\prime \prime }+9 y&=\cos \left (x \right ) x \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

83.815

7971

\begin{align*} x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3.739

7972

\begin{align*} -y+y^{\prime } x +x^{3} y^{\prime \prime \prime }&=3 x^{4} \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.392

7973

\begin{align*} y^{\prime \prime } x -y^{\prime }+4 x^{3} y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9.429

7974

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}+1&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

54.601

7975

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=2 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

4.838

7976

\begin{align*} {y^{\prime }}^{3}+y y^{\prime \prime }&=0 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

1.943

7977

\begin{align*} y^{\prime \prime }+2 y^{\prime }-15 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.949

7978

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime }&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.074

7979

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

6.918

7980

\begin{align*} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.088

7981

\begin{align*} y^{\prime \prime }-4 y^{\prime }+13 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

7.730

7982

\begin{align*} y^{\prime \prime }+25 y&=0 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.724

7983

\begin{align*} y^{\prime \prime \prime }-y^{\prime \prime }+9 y^{\prime }-9 y&=0 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.081

7984

\begin{align*} y^{\prime \prime \prime \prime }+4 y^{\prime \prime }&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.083

7985

\begin{align*} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.090

7986

\begin{align*} y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.108

7987

\begin{align*} y^{\prime \prime }-4 y^{\prime }+3 y&=1 \\ \end{align*}

[[_2nd_order, _missing_x]]

22.304

7988

\begin{align*} y^{\prime \prime }-4 y^{\prime }&=5 \\ \end{align*}

[[_2nd_order, _missing_x]]

4.245

7989

\begin{align*} y^{\prime \prime \prime }-4 y^{\prime \prime }&=5 \\ \end{align*}

[[_3rd_order, _missing_x]]

0.170

7990

\begin{align*} y^{\left (5\right )}-4 y^{\prime \prime \prime }&=5 \\ \end{align*}

[[_high_order, _missing_x]]

0.189

7991

\begin{align*} -4 y^{\prime }+y^{\prime \prime \prime }&=x \\ \end{align*}

[[_3rd_order, _missing_y]]

0.157

7992

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&={\mathrm e}^{2 x} \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

19.763

7993

\begin{align*} y^{\prime \prime }+y^{\prime }-2 y&=-2 x^{2}+2 x +2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

28.879

7994

\begin{align*} y^{\prime \prime }-y&=4 x \,{\mathrm e}^{x} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

25.135

7995

\begin{align*} y^{\prime \prime }-y&=\sin \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.980

7996

\begin{align*} y^{\prime \prime }-y&=\frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

27.429

7997

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

4.503

7998

\begin{align*} 2 y-3 y^{\prime }+y^{\prime \prime }&=\sin \left ({\mathrm e}^{-x}\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

28.620

7999

\begin{align*} y^{\prime \prime }+y&=\csc \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

3.244

8000

\begin{align*} 4 y+y^{\prime \prime }&=4 \sec \left (x \right )^{2} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

6.067