# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}t^{2} y^{\prime \prime }+t \left (1+t \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.257 |
|
\[
{}t y^{\prime \prime }-\left (4+t \right ) y^{\prime }+2 y = 0
\] |
[_Laguerre] |
✓ |
0.295 |
|
\[
{}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.291 |
|
\[
{}t y^{\prime \prime }+t y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.267 |
|
\[
{}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.752 |
|
\[
{}t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.266 |
|
\[
{}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.198 |
|
\[
{}\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y = 0
\] |
[_Gegenbauer] |
✓ |
0.550 |
|
\[
{}4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.300 |
|
\[
{}f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.291 |
|
\[
{}z y^{\prime \prime }-2 y^{\prime }+y z = 0
\] |
[_Lienard] |
✓ |
0.306 |
|
\[
{}z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.333 |
|
\[
{}y^{\prime \prime }+2 y^{\prime } x +4 y = 0
\] |
[_erf] |
✓ |
0.227 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.312 |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }-3 y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.286 |
|
\[
{}\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 y^{\prime } x -16 y = 0
\] |
[_Gegenbauer] |
✓ |
0.304 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0
\] |
[_Gegenbauer] |
✓ |
0.240 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.316 |
|
\[
{}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.376 |
|
\[
{}4 y^{\prime \prime }+y^{\prime } x +4 y = 0
\] |
[_Lienard] |
✓ |
0.298 |
|
\[
{}y^{\prime \prime }+y^{\prime } x -4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.279 |
|
\[
{}4 x y^{\prime \prime }-y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.261 |
|
\[
{}6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.329 |
|
\[
{}3 x^{2} y^{\prime \prime }-x \left (x +8\right ) y^{\prime }+6 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.776 |
|
\[
{}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.714 |
|
\[
{}4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.262 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (1-2 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.301 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.329 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.324 |
|
\[
{}x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.214 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.273 |
|
\[
{}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.240 |
|
\[
{}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.252 |
|
\[
{}x^{2} \left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.236 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.428 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.276 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.313 |
|
\[
{}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.268 |
|
\[
{}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (2+3 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.303 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.383 |
|
\[
{}4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.267 |
|
\[
{}x^{2} y^{\prime \prime }+2 x \left (x +2\right ) y^{\prime }+2 \left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.284 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.286 |
|
\[
{}4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.148 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (4+x \right ) y^{\prime }+\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.293 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {9}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.313 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
0.162 |
|
\[
{}2 x y^{\prime \prime }+5 \left (1-2 x \right ) y^{\prime }-5 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.456 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.180 |
|
\[
{}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.467 |
|
\[
{}x^{4} y^{\prime \prime }+y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.369 |
|
\[
{}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.296 |
|
\[
{}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.514 |
|
\[
{}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.256 |
|
\[
{}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.254 |
|
\[
{}x^{2} \left (1-4 x \right ) y^{\prime \prime }-\frac {y^{\prime } x}{2}-\frac {3 y x}{4} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.342 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.338 |
|
\[
{}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.330 |
|
\[
{}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.284 |
|
\[
{}2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.509 |
|
\[
{}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0
\] |
[_Jacobi] |
✓ |
0.291 |
|
\[
{}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.270 |
|
\[
{}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0
\] |
[_Jacobi] |
✓ |
0.260 |
|
\[
{}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0
\] |
[_Jacobi] |
✓ |
0.277 |
|
\[
{}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.234 |
|
\[
{}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.315 |
|
\[
{}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.164 |
|
\[
{}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.174 |
|
\[
{}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.313 |
|
\[
{}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.370 |
|
\[
{}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.352 |
|
\[
{}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.418 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.144 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.365 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.339 |
|
\[
{}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}}
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.319 |
|
\[
{}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.322 |
|
\[
{}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.257 |
|
\[
{}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.260 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.325 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.316 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.107 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.106 |
|
\[
{}\left (2 x -3\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.396 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -3 y = 0
\] |
[_Hermite] |
✓ |
0.263 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.314 |
|
\[
{}y^{\prime \prime }-y^{\prime } x +2 y = 0
\] |
[_Hermite] |
✓ |
0.293 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.734 |
|
\[
{}x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.227 |
|
\[
{}2 x y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.266 |
|
\[
{}x y^{\prime \prime }+y^{\prime } x -2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.283 |
|
\[
{}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.212 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } x +x^{2} y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.195 |
|
\[
{}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.579 |
|
\[
{}x^{2} \left (x +1\right ) y^{\prime \prime }-\left (2 x +1\right ) \left (-y+y^{\prime } x \right ) = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.329 |
|
\[
{}2 \left (2-x \right ) x^{2} y^{\prime \prime }-x \left (4-x \right ) y^{\prime }+\left (3-x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.209 |
|
\[
{}x^{2} \left (1-x \right ) y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.231 |
|
\[
{}x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.211 |
|
\[
{}y^{\prime \prime }-2 y^{\prime } x +8 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.260 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y = 0
\] |
[_Gegenbauer] |
✓ |
0.361 |
|