2.2.88 Problems 8701 to 8800

Table 2.177: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8701

\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6.303

8702

\[ {}y^{\prime }+\frac {2 y}{x} = 6 y^{2} x^{4} \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.190

8703

\[ {}y^{2}+\cos \left (x \right )+\left (2 x y+\sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

0.350

8704

\[ {}x y-1+x^{2} y^{\prime } = 0 \]

[_linear]

0.293

8705

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

1.467

8706

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.760

8707

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.557

8708

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.776

8709

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+3 y \\ y^{\prime }=-2 x+5 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.555

8710

\[ {}\left [\begin {array}{c} x^{\prime }=-x+4 y \\ y^{\prime }=2 x-3 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.569

8711

\[ {}\left [\begin {array}{c} x^{\prime }=2 x-y \\ y^{\prime }=-x+2 y+4 \,{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.481

8712

\[ {}\left [\begin {array}{c} x^{\prime }=6 x-7 y+10 \\ y^{\prime }=x-2 y-2 \,{\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.529

8713

\[ {}y^{\prime } = \frac {\cos \left (y\right ) \sec \left (x \right )}{x} \]

[_separable]

2.586

8714

\[ {}y^{\prime } = x \left (\cos \left (y\right )+y\right ) \]

[_separable]

1.738

8715

\[ {}y^{\prime } = \frac {\sec \left (x \right ) \left (\sin \left (y\right )+y\right )}{x} \]

[_separable]

3.333

8716

\[ {}y^{\prime } = \left (5+\frac {\sec \left (x \right )}{x}\right ) \left (\sin \left (y\right )+y\right ) \]

[_separable]

12.026

8717

\[ {}y^{\prime } = 1+y \]

[_quadrature]

1.181

8718

\[ {}y^{\prime } = x +1 \]

[_quadrature]

0.465

8719

\[ {}y^{\prime } = x \]

[_quadrature]

0.454

8720

\[ {}y^{\prime } = y \]

[_quadrature]

1.352

8721

\[ {}y^{\prime } = 0 \]

[_quadrature]

0.720

8722

\[ {}y^{\prime } = 1+\frac {\sec \left (x \right )}{x} \]

[_quadrature]

1.019

8723

\[ {}y^{\prime } = x +\frac {\sec \left (x \right ) y}{x} \]

[_linear]

7.385

8724

\[ {}y^{\prime } = \frac {2 y}{x} \]
i.c.

[_separable]

2.802

8725

\[ {}y^{\prime } = \frac {2 y}{x} \]

[_separable]

2.185

8726

\[ {}y^{\prime } = \frac {\ln \left (1+y^{2}\right )}{\ln \left (x^{2}+1\right )} \]

[_separable]

1.796

8727

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

0.466

8728

\[ {}y^{\prime } = \frac {-x y-1}{4 x^{3} y-2 x^{2}} \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.684

8729

\[ {}\frac {{y^{\prime }}^{2}}{4}-y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.349

8730

\[ {}y^{\prime } = \sqrt {\frac {1+y}{y^{2}}} \]
i.c.

[_quadrature]

1445.155

8731

\[ {}y^{\prime } = \sqrt {1-x^{2}-y^{2}} \]

[‘y=_G(x,y’)‘]

1.782

8732

\[ {}y^{\prime }+\frac {y}{3} = \frac {\left (1-2 x \right ) y^{4}}{3} \]

[_Bernoulli]

2.319

8733

\[ {}y^{\prime } = \sqrt {y}+x \]

[[_1st_order, _with_linear_symmetries], _Chini]

5.065

8734

\[ {}x^{2} y^{\prime }+y^{2} = x y y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

37.975

8735

\[ {}y = y^{\prime } x +x^{2} {y^{\prime }}^{2} \]

[_separable]

0.967

8736

\[ {}\left (x +y\right ) y^{\prime } = 0 \]

[_quadrature]

0.699

8737

\[ {}y^{\prime } x = 0 \]

[_quadrature]

0.677

8738

\[ {}\frac {y^{\prime }}{x +y} = 0 \]

[_quadrature]

0.702

8739

\[ {}\frac {y^{\prime }}{x} = 0 \]

[_quadrature]

0.675

8740

\[ {}y^{\prime } = 0 \]

[_quadrature]

0.659

8741

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.506

8742

\[ {}y^{\prime } = \frac {5 x^{2}-x y+y^{2}}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.829

8743

\[ {}2 t +3 x+\left (x+2\right ) x^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.633

8744

\[ {}y^{\prime } = \frac {1}{1-y} \]
i.c.

[_quadrature]

1.807

8745

\[ {}p^{\prime } = a p-b p^{2} \]
i.c.

[_quadrature]

1.737

8746

\[ {}y^{2}+\frac {2}{x}+2 x y y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

1.984

8747

\[ {}x f^{\prime }-f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \]

[_Clairaut]

3.653

8748

\[ {}y^{\prime } x -2 y+b y^{2} = c \,x^{4} \]

[_rational, _Riccati]

2.563

8749

\[ {}y^{\prime } x -y+y^{2} = x^{{2}/{3}} \]

[_rational, _Riccati]

11.846

8750

\[ {}u^{\prime }+u^{2} = \frac {1}{x^{{4}/{5}}} \]

[_rational, _Riccati]

0.391

8751

\[ {}y y^{\prime }-y = x \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.329

8752

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.252

8753

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3.280

8754

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \]

[[_2nd_order, _missing_x]]

15.158

8755

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

75.902

8756

\[ {}y = x {y^{\prime }}^{2} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.489

8757

\[ {}y y^{\prime } = 1-x {y^{\prime }}^{3} \]

[_dAlembert]

0.256

8758

\[ {}f^{\prime } = \frac {1}{f} \]

[_quadrature]

1.643

8759

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

1.364

8760

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

1.431

8761

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

2.086

8762

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.903

8763

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

1.036

8764

\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.881

8765

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.387

8766

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

2.080

8767

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

2.484

8768

\[ {}y^{\prime \prime } = f \left (t \right ) \]

[[_2nd_order, _quadrature]]

0.682

8769

\[ {}y^{\prime \prime } = k \]

[[_2nd_order, _quadrature]]

2.641

8770

\[ {}y^{\prime } = -4 \sin \left (x -y\right )-4 \]

[[_homogeneous, ‘class C‘], _dAlembert]

75.256

8771

\[ {}y^{\prime }+\sin \left (x -y\right ) = 0 \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.692

8772

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

[[_2nd_order, _quadrature]]

2.388

8773

\[ {}y y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

2.101

8774

\[ {}y y^{\prime \prime } = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.521

8775

\[ {}y y^{\prime \prime } = x \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.122

8776

\[ {}y^{2} y^{\prime \prime } = x \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.126

8777

\[ {}y^{2} y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

2.201

8778

\[ {}3 y y^{\prime \prime } = \sin \left (x \right ) \]

[NONE]

0.240

8779

\[ {}3 y y^{\prime \prime }+y = 5 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

494.702

8780

\[ {}a y y^{\prime \prime }+b y = c \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.086

8781

\[ {}a y^{2} y^{\prime \prime }+b y^{2} = c \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.560

8782

\[ {}a y y^{\prime \prime }+b y = 0 \]

[[_2nd_order, _quadrature]]

2.906

8783

\[ {}\left [\begin {array}{c} x^{\prime }=9 x+4 y \\ y^{\prime }=-6 x-y \\ z^{\prime }=6 x+4 y+3 z \end {array}\right ] \]

system_of_ODEs

0.396

8784

\[ {}\left [\begin {array}{c} x^{\prime }=x-3 y \\ y^{\prime }=3 x+7 y \end {array}\right ] \]

system_of_ODEs

0.406

8785

\[ {}\left [\begin {array}{c} x^{\prime }=x-2 y \\ y^{\prime }=2 x+5 y \end {array}\right ] \]

system_of_ODEs

0.382

8786

\[ {}\left [\begin {array}{c} x^{\prime }=7 x+y \\ y^{\prime }=-4 x+3 y \end {array}\right ] \]

system_of_ODEs

0.411

8787

\[ {}\left [\begin {array}{c} x^{\prime }=x+y \\ y^{\prime }=y \\ z^{\prime }=z \end {array}\right ] \]

system_of_ODEs

0.322

8788

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y-z \\ y^{\prime }=-x+2 z \\ z^{\prime }=-x-2 y+4 z \end {array}\right ] \]

system_of_ODEs

0.353

8789

\[ {}x^{\prime } = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \]

[_quadrature]

5.440

8790

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.316

8791

\[ {}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

1.162

8792

\[ {}y^{\prime } = \frac {y \left (1+\frac {a^{2} x}{\sqrt {a^{2} \left (x^{2}+1\right )}}\right )}{\sqrt {a^{2} \left (x^{2}+1\right )}} \]

[_separable]

118.786

8793

\[ {}y^{\prime } = x^{2}+y^{2} \]

[[_Riccati, _special]]

1.112

8794

\[ {}y^{\prime } = 2 \sqrt {y} \]
i.c.

[_quadrature]

1.214

8795

\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.371

8796

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

39.910

8797

\[ {}y^{\prime } = x^{2}+y^{2}-1 \]

[_Riccati]

1.800

8798

\[ {}y^{\prime } = 2 y \left (x \sqrt {y}-1\right ) \]
i.c.

[_Bernoulli]

1.512

8799

\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

68.701

8800

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.592