2.2.88 Problems 8701 to 8800

Table 2.177: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8701

y=2xyx+4y
i.c.

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.102

8702

y+2yx=6y2x4

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

2.401

8703

y2+cos(x)+(2xy+sin(y))y=0

[_exact]

0.337

8704

xy1+x2y=0

[_linear]

0.275

8705

yy2y=5e2x

[[_2nd_order, _with_linear_symmetries]]

1.200

8706

y+16y=4cos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

3.526

8707

y4y+3y=9x2+4
i.c.

[[_2nd_order, _with_linear_symmetries]]

1.260

8708

y+y=tan(x)2

[[_2nd_order, _linear, _nonhomogeneous]]

3.579

8709

[x=2x+3yy=2x+5y]
i.c.

system_of_ODEs

0.586

8710

[x=x+4yy=2x3y]
i.c.

system_of_ODEs

0.590

8711

[x=2xyy=x+2y+4et]

system_of_ODEs

0.448

8712

[x=6x7y+10y=x2y2et]

system_of_ODEs

0.516

8713

y=cos(y)sec(x)x

[_separable]

3.084

8714

y=x(cos(y)+y)

[_separable]

1.924

8715

y=sec(x)(sin(y)+y)x

[_separable]

3.716

8716

y=(5+sec(x)x)(sin(y)+y)

[_separable]

13.742

8717

y=y+1

[_quadrature]

1.374

8718

y=x+1

[_quadrature]

0.452

8719

y=x

[_quadrature]

0.450

8720

y=y

[_quadrature]

1.563

8721

y=0

[_quadrature]

0.440

8722

y=1+sec(x)x

[_quadrature]

0.761

8723

y=x+sec(x)yx

[_linear]

6.469

8724

y=2yx
i.c.

[_separable]

2.639

8725

y=2yx

[_separable]

2.267

8726

y=ln(1+y2)ln(x2+1)

[_separable]

2.018

8727

y=1x

[_quadrature]

0.441

8728

y=xy14x3y2x2

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.786

8729

y24xy+y=0

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.411

8730

y=y+1y2
i.c.

[_quadrature]

1687.005

8731

y=1x2y2

[‘y=_G(x,y’)‘]

1.580

8732

y+y3=(12x)y43

[_Bernoulli]

2.260

8733

y=y+x

[[_1st_order, _with_linear_symmetries], _Chini]

10.400

8734

x2y+y2=xyy

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

40.740

8735

y=xy+x2y2

[_separable]

0.436

8736

(x+y)y=0

[_quadrature]

0.524

8737

xy=0

[_quadrature]

0.443

8738

yx+y=0

[_quadrature]

0.496

8739

yx=0

[_quadrature]

0.449

8740

y=0

[_quadrature]

0.439

8741

y=xy2+y2

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.508

8742

y=5x2xy+y2x2

[[_homogeneous, ‘class A‘], _rational, _Riccati]

2.816

8743

2t+3x+(x+2)x=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.546

8744

y=11y
i.c.

[_quadrature]

2.230

8745

p=apbp2
i.c.

[_quadrature]

5.109

8746

y2+2x+2xyy=0

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.407

8747

xff=f2(1fλ)2λ2

[_Clairaut]

5.423

8748

xy2y+by2=cx4

[_rational, _Riccati]

2.250

8749

xyy+y2=x2/3

[_rational, _Riccati]

11.816

8750

u+u2=1x4/5

[_rational, _Riccati]

0.439

8751

yyy=x

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.945

8752

y+2y+y=0

[[_2nd_order, _missing_x]]

0.947

8753

5y+2y+4y=0
i.c.

[[_2nd_order, _missing_x]]

2.777

8754

y+y+4y=1

[[_2nd_order, _missing_x]]

14.192

8755

y+y+4y=sin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

75.832

8756

y=xy2

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.406

8757

yy=1xy3

[_dAlembert]

0.300

8758

f=1f

[_quadrature]

1.826

8759

ty+4y=t2

[[_2nd_order, _missing_y]]

1.108

8760

(t2+9)y+2ty=0
i.c.

[[_2nd_order, _missing_y]]

1.335

8761

t2y3ty+5y=0

[[_Emden, _Fowler]]

3.406

8762

ty+y=0

[[_2nd_order, _missing_y]]

0.722

8763

t2y2y=0

[[_2nd_order, _missing_y]]

0.834

8764

y+(t21)yt+t2y(1+et22)2=0

[[_2nd_order, _with_linear_symmetries]]

0.867

8765

tyy+4t3y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.141

8766

y=0

[[_2nd_order, _quadrature]]

1.894

8767

y=1

[[_2nd_order, _quadrature]]

2.096

8768

y=f(t)

[[_2nd_order, _quadrature]]

0.482

8769

y=k

[[_2nd_order, _quadrature]]

2.152

8770

y=4sin(xy)4

[[_homogeneous, ‘class C‘], _dAlembert]

73.916

8771

y+sin(xy)=0

[[_homogeneous, ‘class C‘], _dAlembert]

2.297

8772

y=4sin(x)4

[[_2nd_order, _quadrature]]

2.196

8773

yy=0

[[_2nd_order, _quadrature]]

0.148

8774

yy=1

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.724

8775

yy=x

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.103

8776

y2y=x

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

0.107

8777

y2y=0

[[_2nd_order, _quadrature]]

0.158

8778

3yy=sin(x)

[NONE]

0.300

8779

3yy+y=5

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

32.918

8780

ayy+by=c

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.676

8781

ay2y+by2=c

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.796

8782

ayy+by=0

[[_2nd_order, _quadrature]]

0.622

8783

[x=9x+4yy=6xyz=6x+4y+3z]

system_of_ODEs

0.392

8784

[x=x3yy=3x+7y]

system_of_ODEs

0.438

8785

[x=x2yy=2x+5y]

system_of_ODEs

0.427

8786

[x=7x+yy=4x+3y]

system_of_ODEs

0.441

8787

[x=x+yy=yz=z]

system_of_ODEs

0.328

8788

[x=2x+yzy=x+2zz=x2y+4z]

system_of_ODEs

0.375

8789

x=4Ak(xA)3/43kx

[_quadrature]

10.339

8790

yy1+1+y22=x

[[_homogeneous, ‘class A‘], _dAlembert]

0.836

8791

yy1+1+y22=x
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

0.851

8792

y=y(1+a2xa2(x2+1))a2(x2+1)

[_separable]

38.539

8793

y=x2+y2

[[_Riccati, _special]]

1.151

8794

y=2y
i.c.

[_quadrature]

1.669

8795

z+3z+2z=24e3t24e4t

[[_2nd_order, _linear, _nonhomogeneous]]

1.120

8796

y=1y2

[_quadrature]

41.197

8797

y=x2+y21

[_Riccati]

1.949

8798

y=2y(xy1)
i.c.

[_Bernoulli]

1.569

8799

y=1yxyy2

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

67.281

8800

y+y+y=0
i.c.

[[_2nd_order, _missing_x]]

2.162