# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}x \left (x +2\right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.277 |
|
\[
{}x \left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
0.254 |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.275 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.324 |
|
\[
{}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.458 |
|
\[
{}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.408 |
|
\[
{}y^{\prime \prime }-y^{\prime } x +2 y = 0
\] |
[_Hermite] |
✓ |
0.282 |
|
\[
{}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x -y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.298 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.273 |
|
\[
{}\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.402 |
|
\[
{}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.270 |
|
\[
{}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.411 |
|
\[
{}2 x y^{\prime \prime }-y^{\prime }+2 y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.246 |
|
\[
{}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0
\] |
[_Laguerre] |
✓ |
0.359 |
|
\[
{}2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.251 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }-y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.104 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.184 |
|
\[
{}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.301 |
|
\[
{}x^{4} y^{\prime \prime }+\lambda y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.273 |
|
\[
{}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.334 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.197 |
|
\[
{}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.305 |
|
\[
{}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.305 |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.168 |
|
\[
{}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.312 |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }+y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.398 |
|
\[
{}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0
\] |
[_Laguerre] |
✓ |
0.251 |
|
\[
{}y^{\prime \prime }+y^{\prime } x +2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.257 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.301 |
|
\[
{}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.102 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +30 y = 0
\] |
[_Gegenbauer] |
✓ |
0.347 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
0.161 |
|
\[
{}x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.200 |
|
\[
{}2 x \left (x -1\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0
\] |
[_Jacobi] |
✓ |
0.231 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+4 y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.174 |
|
\[
{}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.112 |
|
\[
{}x^{2} y^{\prime \prime }+6 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.179 |
|
\[
{}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.199 |
|
\[
{}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0
\] |
[_Jacobi] |
✓ |
0.301 |
|
\[
{}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.293 |
|
\[
{}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.283 |
|
\[
{}3 t \left (1+t \right ) y^{\prime \prime }+t y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.330 |
|
\[
{}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.235 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.190 |
|
\[
{}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.199 |
|
\[
{}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0
\] |
[_Laguerre] |
✓ |
0.255 |
|
\[
{}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.305 |
|
\[
{}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.249 |
|
\[
{}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.260 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
0.164 |
|
\[
{}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.145 |
|
\[
{}u^{\prime \prime }+\frac {u}{x^{2}} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.260 |
|
\[
{}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.122 |
|
\[
{}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.177 |
|
\[
{}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.166 |
|
\[
{}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.168 |
|
\[
{}y^{\prime \prime }+\frac {y}{2 x^{4}} = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.270 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.269 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.267 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.266 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.270 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.271 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.276 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.269 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.272 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.267 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.268 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.279 |
|
\[
{}x y^{\prime \prime }+2 y^{\prime }+y x = 0
\] |
[_Lienard] |
✓ |
0.164 |
|
\[
{}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y x = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.220 |
|
\[
{}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.258 |
|
\[
{}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.066 |
|
\[
{}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.308 |
|
\[
{}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4+x \right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.348 |
|
\[
{}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.244 |
|
\[
{}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.177 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.182 |
|
\[
{}x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.285 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.180 |
|
\[
{}x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y = 0
\] |
[[_Emden, _Fowler]] |
✓ |
0.308 |
|
\[
{}y^{\prime \prime } = \left (x^{2}+3\right ) y
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.242 |
|
\[
{}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.114 |
|
\[
{}x^{3} y^{\prime \prime }+y^{\prime }-\frac {y}{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.247 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.178 |
|
\[
{}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.136 |
|
\[
{}y^{\prime \prime }-y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
0.281 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.235 |
|
\[
{}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.121 |
|
\[
{}\left (x +1\right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.259 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.238 |
|
\[
{}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0
\] |
[_Gegenbauer] |
✓ |
0.286 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.183 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0
\] |
[_Gegenbauer] |
✓ |
0.274 |
|
\[
{}\left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.404 |
|
\[
{}\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0
\] |
[_Gegenbauer] |
✓ |
0.229 |
|
\[
{}3 y^{\prime \prime }+y^{\prime } x -4 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.261 |
|
\[
{}5 y^{\prime \prime }-2 y^{\prime } x +10 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.296 |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }-3 y x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.292 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.315 |
|
\[
{}y^{\prime \prime }+y^{\prime } x -2 y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.247 |
|