2.2.86 Problems 8501 to 8600

Table 2.173: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8501

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.588

8502

\[ {}\cos \left (x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

2.188

8503

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.391

8504

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.343

8505

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

24.242

8506

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

27.596

8507

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.263

8508

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.114

8509

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

[[_2nd_order, _missing_y]]

1.093

8510

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.323

8511

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

[[_2nd_order, _missing_y]]

0.270

8512

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.157

8513

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.244

8514

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

4.904

8515

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

[[_2nd_order, _missing_x]]

4.552

8516

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

1.041

8517

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.121

8518

\[ {}\left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

14.196

8519

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.753

8520

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

0.548

8521

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 y^{\prime } x \right ) \]

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.557

8522

\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \]
i.c.

[[_2nd_order, _missing_y]]

0.794

8523

\[ {}y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2} \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

0.710

8524

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 y^{\prime } x +x^{2} = 0 \]
i.c.

[[_2nd_order, _missing_y]]

3.199

8525

\[ {}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

0.377

8526

\[ {}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

[[_2nd_order, _missing_y]]

8.936

8527

\[ {}3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.787

8528

\[ {}4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.586

8529

\[ {}y^{\prime \prime }+y = -\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.280

8530

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1.510

8531

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.416

8532

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1 \]

[[_2nd_order, _with_linear_symmetries]]

1.356

8533

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

4.792

8534

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

[_quadrature]

2.906

8535

\[ {}9 {y^{\prime }}^{2}+3 x y^{4} y^{\prime }+y^{5} = 0 \]

[[_1st_order, _with_linear_symmetries]]

79.856

8536

\[ {}4 y^{3} {y^{\prime }}^{2}-4 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational]

3.625

8537

\[ {}x^{6} {y^{\prime }}^{2}-2 y^{\prime } x -4 y = 0 \]

[[_homogeneous, ‘class G‘], _rational]

2.258

8538

\[ {}5 {y^{\prime }}^{2}+6 y^{\prime } x -2 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.477

8539

\[ {}y^{2} {y^{\prime }}^{2}-y \left (x +1\right ) y^{\prime }+x = 0 \]

[_quadrature]

5.147

8540

\[ {}4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

[[_homogeneous, ‘class G‘]]

5.956

8541

\[ {}4 y^{2} {y^{\prime }}^{3}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries]]

107.367

8542

\[ {}{y^{\prime }}^{4}+y^{\prime } x -3 y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

2.247

8543

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.240

8544

\[ {}16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]

[[_homogeneous, ‘class G‘]]

3.749

8545

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

[_quadrature]

0.896

8546

\[ {}{y^{\prime }}^{3}-2 y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.215

8547

\[ {}9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0 \]

[[_homogeneous, ‘class G‘], _rational]

21.689

8548

\[ {}x^{2} {y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+y^{2}+1 = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.639

8549

\[ {}x^{6} {y^{\prime }}^{2} = 16 y+8 y^{\prime } x \]

[[_homogeneous, ‘class G‘]]

2.100

8550

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

[_linear]

3.872

8551

\[ {}\left (1+y^{\prime }\right )^{2} \left (y-y^{\prime } x \right ) = 1 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.856

8552

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+y^{\prime } x -y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.634

8553

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

[_quadrature]

3.412

8554

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.748

8555

\[ {}x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

0.585

8556

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

[[_1st_order, _with_linear_symmetries]]

128.139

8557

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.438

8558

\[ {}y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

0.665

8559

\[ {}y^{\prime \prime }+3 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.638

8560

\[ {}\left (4 x^{2}+1\right ) y^{\prime \prime }-8 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.648

8561

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.699

8562

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.586

8563

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+10 y^{\prime } x +20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.697

8564

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.680

8565

\[ {}\left (x^{2}-9\right ) y^{\prime \prime }+3 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.661

8566

\[ {}y^{\prime \prime }+2 y^{\prime } x +5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.644

8567

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.739

8568

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.677

8569

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.512

8570

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x -4 y = 0 \]

[_Gegenbauer]

0.688

8571

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.638

8572

\[ {}y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

1.068

8573

\[ {}y^{\prime \prime }+y^{\prime } x +3 y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.671

8574

\[ {}y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.635

8575

\[ {}y^{\prime \prime }+3 y^{\prime } x +7 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.651

8576

\[ {}2 y^{\prime \prime }+9 y^{\prime } x -36 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.616

8577

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.668

8578

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+3 y^{\prime } x -8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.661

8579

\[ {}\left (9 x^{2}+1\right ) y^{\prime \prime }-18 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.641

8580

\[ {}\left (3 x^{2}+1\right ) y^{\prime \prime }+13 y^{\prime } x +7 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.695

8581

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+11 y^{\prime } x +9 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.741

8582

\[ {}y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.671

8583

\[ {}y^{\prime \prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.547

8584

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime }-4 \left (x -1\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.563

8585

\[ {}2 x \left (x +1\right ) y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.025

8586

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.931

8587

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (4 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.990

8588

\[ {}4 x y^{\prime \prime }+3 y^{\prime }+3 y = 0 \]

[[_Emden, _Fowler]]

1.042

8589

\[ {}2 x^{2} \left (1-x \right ) y^{\prime \prime }-x \left (1+7 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.089

8590

\[ {}2 x y^{\prime \prime }+5 \left (1-2 x \right ) y^{\prime }-5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.102

8591

\[ {}8 x^{2} y^{\prime \prime }+10 y^{\prime } x -\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.108

8592

\[ {}2 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.899

8593

\[ {}2 x \left (x +3\right ) y^{\prime \prime }-3 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.045

8594

\[ {}2 x y^{\prime \prime }+\left (-2 x^{2}+1\right ) y^{\prime }-4 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.898

8595

\[ {}x \left (4-x \right ) y^{\prime \prime }+\left (2-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.131

8596

\[ {}3 x^{2} y^{\prime \prime }+y^{\prime } x -\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.113

8597

\[ {}2 x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.086

8598

\[ {}2 x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.133

8599

\[ {}2 x^{2} y^{\prime \prime }-3 x \left (1-x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.126

8600

\[ {}2 x^{2} y^{\prime \prime }+x \left (4 x -1\right ) y^{\prime }+2 \left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.070