| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }-y&=\sin \left (x \right )+\cos \left (2 x \right ) \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.917 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x}+1 \\
\end{align*} |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.176 |
|
| \begin{align*}
y^{\prime \prime \prime }+y^{\prime }&=\sec \left (x \right ) \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.527 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }&=\frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}} \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✗ |
0.309 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
21.735 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
23.517 |
|
| \begin{align*}
x^{\prime \prime }+4 x&=\sin \left (2 t \right )^{2} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.016 |
|
| \begin{align*}
t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N&=t \ln \left (t \right ) \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
6.668 |
|
| \begin{align*}
y^{\prime }+\frac {4 y}{x}&=x^{4} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
5.245 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }&=5 x \\
\end{align*} |
[[_high_order, _quadrature]] |
✓ |
✓ |
✓ |
✓ |
0.130 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=\frac {{\mathrm e}^{x}}{x^{5}} \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
82.427 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sec \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.869 |
|
| \begin{align*}
y^{\prime \prime }-y^{\prime }-2 y&={\mathrm e}^{3 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
23.307 |
|
| \begin{align*}
y^{\prime \prime }-60 y^{\prime }-900 y&=5 \,{\mathrm e}^{10 x} \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
60.026 |
|
| \begin{align*}
y^{\prime \prime }-7 y^{\prime }&=-3 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.842 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}}&=\ln \left (x \right ) \\
\end{align*} |
[[_2nd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
94.094 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x&={\mathrm e}^{x} x^{3} \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
4.677 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=x^{2} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
3.796 |
|
| \begin{align*}
2 y+y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.374 |
|
| \begin{align*}
2 y+y^{\prime }&=2 \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.195 |
|
| \begin{align*}
2 y+y^{\prime }&={\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.341 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.183 |
|
| \begin{align*}
y^{\prime \prime }-y&=\sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.402 |
|
| \begin{align*}
y^{\prime \prime }-y&={\mathrm e}^{x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.357 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=\sin \left (2 x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.438 |
|
| \begin{align*}
y^{\prime \prime }+y&=\sin \left (x \right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.399 |
|
| \begin{align*}
y^{\prime \prime }+y^{\prime }+y&=0 \\
y \left (0\right ) &= 4 \\
y^{\prime }\left (0\right ) &= -3 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.328 |
|
| \begin{align*}
5 y+2 y^{\prime }+y^{\prime \prime }&=3 \,{\mathrm e}^{-2 x} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.393 |
|
| \begin{align*}
y^{\prime \prime }+5 y^{\prime }-3 y&=\operatorname {Heaviside}\left (x -4\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
3.717 |
|
| \begin{align*}
y^{\prime \prime \prime }-y&=5 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_3rd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| \begin{align*}
y^{\prime \prime \prime \prime }-y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
y^{\prime \prime }\left (0\right ) &= 0 \\
y^{\prime \prime \prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
[[_high_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.437 |
|
| \begin{align*}
y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y&={\mathrm e}^{x} x^{2} \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 2 \\
y^{\prime \prime }\left (0\right ) &= 3 \\
\end{align*} Using Laplace transform method. |
[[_3rd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.424 |
|
| \begin{align*}
x^{\prime \prime }+4 x^{\prime }+4 x&=0 \\
x \left (0\right ) &= 2 \\
x^{\prime }\left (0\right ) &= -2 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.293 |
|
| \begin{align*}
q^{\prime \prime }+9 q^{\prime }+14 q&=\frac {\sin \left (t \right )}{2} \\
q \left (0\right ) &= 0 \\
q^{\prime }\left (0\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.468 |
|
| \begin{align*}
\left (x +1\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.795 |
|
| \begin{align*}
x^{3} y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✗ |
✗ |
✓ |
✗ |
0.153 |
|
| \begin{align*}
y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.359 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime } x -2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.479 |
|
| \begin{align*}
y^{\prime \prime }+x^{2} y^{\prime }+2 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.483 |
|
| \begin{align*}
y^{\prime \prime }-x^{2} y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.537 |
|
| \begin{align*}
y^{\prime \prime }+2 x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.384 |
|
| \begin{align*}
\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.476 |
|
| \begin{align*}
y^{\prime \prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.354 |
|
| \begin{align*}
y^{\prime \prime }-2 y^{\prime } x +x^{2} y&=0 \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= -1 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.477 |
|
| \begin{align*}
y^{\prime } x&=2 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.664 |
|
| \begin{align*}
y y^{\prime }+x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
9.587 |
|
| \begin{align*}
y&=y^{\prime } x +{y^{\prime }}^{4} \\
\end{align*} |
[[_1st_order, _with_linear_symmetries], _Clairaut] |
✓ |
✓ |
✓ |
✗ |
4.277 |
|
| \begin{align*}
2 x^{3} y^{\prime }&=y \left (3 x^{2}+y^{2}\right ) \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
79.300 |
|
| \begin{align*}
y-2 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.421 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
12.926 |
|
| \begin{align*}
y^{\prime \prime }-y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.123 |
|
| \begin{align*}
y^{\prime \prime }-y&=4-x \\
\end{align*} |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
10.799 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
5.330 |
|
| \begin{align*}
2 y-3 y^{\prime }+y^{\prime \prime }&=2 \,{\mathrm e}^{x} \left (1-x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
82.524 |
|
| \begin{align*}
4 y+y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.574 |
|
| \begin{align*}
1+2 y+\left (-x^{2}+4\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
8.878 |
|
| \begin{align*}
y^{2}-x^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.908 |
|
| \begin{align*}
1+y-\left (x +1\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.258 |
|
| \begin{align*}
x y^{2}+y+\left (x^{2} y-x \right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
13.421 |
|
| \begin{align*}
x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
7.990 |
|
| \begin{align*}
y^{2} \left (x^{2}+2\right )+\left (x^{3}+y^{3}\right ) \left (-y^{\prime } x +y\right )&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational] |
✓ |
✓ |
✓ |
✗ |
3.889 |
|
| \begin{align*}
y \sqrt {x^{2}+y^{2}}-x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
42.792 |
|
| \begin{align*}
x +y+1+\left (2 x +2 y+1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
11.481 |
|
| \begin{align*}
1+2 y-\left (4-x \right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.190 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime }+y x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.435 |
|
| \begin{align*}
x +2 y+\left (2 x +3 y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
13.520 |
|
| \begin{align*}
2 y^{\prime } x -2 y&=\sqrt {x^{2}+4 y^{2}} \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
✓ |
✓ |
✓ |
20.190 |
|
| \begin{align*}
3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
125.964 |
|
| \begin{align*}
y y^{\prime } x&=\left (1+y\right ) \left (1-x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.003 |
|
| \begin{align*}
y^{2}-x^{2}+y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.245 |
|
| \begin{align*}
y \left (2 y x +1\right )+x \left (-y x +1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
✓ |
✓ |
✓ |
13.621 |
|
| \begin{align*}
1+\left (-x^{2}+1\right ) \cot \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.904 |
|
| \begin{align*}
x^{3}+y^{3}+3 y^{\prime } y^{2} x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.897 |
|
| \begin{align*}
3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
10.906 |
|
| \begin{align*}
y^{\prime } x +2 y&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.025 |
|
| \begin{align*}
y y^{\prime } x +x^{2}+y^{2}&=0 \\
y \left (1\right ) &= -1 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
13.348 |
|
| \begin{align*}
\cos \left (y\right )+\left (1+{\mathrm e}^{-x}\right ) \sin \left (y\right ) y^{\prime }&=0 \\
y \left (0\right ) &= \frac {\pi }{4} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.140 |
|
| \begin{align*}
y^{2}+y x -y^{\prime } x&=0 \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
3.174 |
|
| \begin{align*}
y^{\prime }&=-2 \left (2 x +3 y\right )^{2} \\
\end{align*} |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
✓ |
✓ |
✓ |
15.543 |
|
| \begin{align*}
x -2 \sin \left (y\right )+3+\left (2 x -4 \sin \left (y\right )-3\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]] |
✓ |
✓ |
✓ |
✓ |
10.401 |
|
| \begin{align*}
x^{2}-y-y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.206 |
|
| \begin{align*}
x^{2}+y^{2}+2 y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
x +\cos \left (x \right ) y+\sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.182 |
|
| \begin{align*}
2 x +3 y+4+\left (3 x +4 y+5\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.783 |
|
| \begin{align*}
4 x^{3} y^{3}+\frac {1}{x}+\left (3 y^{2} x^{4}-\frac {1}{y}\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational] |
✓ |
✓ |
✓ |
✓ |
1.548 |
|
| \begin{align*}
2 u^{2}+2 u v+\left (u^{2}+v^{2}\right ) v^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.343 |
|
| \begin{align*}
x \sqrt {x^{2}+y^{2}}-y+\left (y \sqrt {x^{2}+y^{2}}-x \right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
0.286 |
|
| \begin{align*}
x +y+1-\left (3-x +y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.738 |
|
| \begin{align*}
y^{2}-\frac {y}{x \left (x +y\right )}+2+\left (\frac {1}{x +y}+2 \left (x +1\right ) y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact, _rational] |
✓ |
✓ |
✓ |
✗ |
0.470 |
|
| \begin{align*}
2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime }&=0 \\
\end{align*} |
[_exact] |
✓ |
✓ |
✓ |
✗ |
0.471 |
|
| \begin{align*}
y \left (x -2 y\right )-x^{2} y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
7.018 |
|
| \begin{align*}
y y^{\prime } x +x^{2}+y^{2}&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
11.211 |
|
| \begin{align*}
x^{2}+y^{2}+2 y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
10.900 |
|
| \begin{align*}
1-\sqrt {a^{2}-x^{2}}\, y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.666 |
|
| \begin{align*}
x +y+1-\left (-3+x -y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
21.512 |
|
| \begin{align*}
x -x^{2}-y^{2}+y y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
0.922 |
|
| \begin{align*}
2 y-3 x +y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.201 |
|
| \begin{align*}
x -y^{2}+2 y y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _rational, _Bernoulli] |
✓ |
✓ |
✓ |
✓ |
1.142 |
|
| \begin{align*}
-y-3 \left (x^{2}+y^{2}\right ) x^{2}+y^{\prime } x&=0 \\
\end{align*} |
[[_homogeneous, ‘class D‘], _rational, _Riccati] |
✓ |
✓ |
✓ |
✓ |
0.358 |
|
| \begin{align*}
y-\ln \left (x \right )-y^{\prime } x&=0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.262 |
|