2.2.86 Problems 8501 to 8600

Table 2.173: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

8501

cos(x)y=y

[[_2nd_order, _missing_y]]

8502

y=xy2
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8503

y=xy2
i.c.

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8504

y=e2y
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8505

y=e2y
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8506

2y=sin(2y)
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8507

2y=sin(2y)
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8508

x3yx2y=x2+3

[[_2nd_order, _missing_y]]

8509

y=y2

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

8510

y=exy2

[[_2nd_order, _missing_y]]

8511

2y=y3sin(2x)

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8512

x2y+y2=0

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

8513

y=y2+1

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

8514

y=(y2+1)3/2

[[_2nd_order, _missing_x]]

8515

yy=y2(1ysin(y)yycos(y))

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

8516

(1+y2)y+y3+y=0

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8517

(yy+1+y2)2=(y2+1)3

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8518

x2y=y(2xy)
i.c.

[[_2nd_order, _missing_y]]

8519

x2y=y(3x2y)

[[_2nd_order, _missing_y]]

8520

xy=y(23yx)

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

8521

x4y=y(y+x3)
i.c.

[[_2nd_order, _missing_y]]

8522

y=2x+(x2y)2

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

8523

y22y+y22yx+x2=0
i.c.

[[_2nd_order, _missing_y]]

8524

y2xy+y=0

[[_2nd_order, _missing_y]]

8525

y3=12y(xy2y)

[[_2nd_order, _missing_y]]

8526

3yyy=y31

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8527

4yy2y=y4+3

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

8528

y+y=cos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

8529

y6y+9y=ex

[[_2nd_order, _with_linear_symmetries]]

8530

y+3y+2y=12x2

[[_2nd_order, _with_linear_symmetries]]

8531

y+3y+2y=x2+2x+1

[[_2nd_order, _with_linear_symmetries]]

8532

x3y2+x2yy+4=0

[[_homogeneous, ‘class G‘], _rational]

8533

6xy2(3x+2y)y+y=0

[_quadrature]

8534

9y2+3xy4y+y5=0

[[_1st_order, _with_linear_symmetries]]

8535

4y3y24yx+y=0

[[_1st_order, _with_linear_symmetries], _rational]

8536

x6y22yx4y=0

[[_homogeneous, ‘class G‘], _rational]

8537

5y2+6yx2y=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

8538

y2y2(x+1)yy+x=0

[_quadrature]

8539

4x5y2+12x4yy+9=0

[[_homogeneous, ‘class G‘]]

8540

4y2y32yx+y=0

[[_1st_order, _with_linear_symmetries]]

8541

y4+yx3y=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

8542

x2y32xyy2+y2y+1=0

[[_1st_order, _with_linear_symmetries], _Clairaut]

8543

16xy2+8yy+y6=0

[[_homogeneous, ‘class G‘]]

8544

xy2(x2+1)y+x=0

[_quadrature]

8545

y32yxy=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

8546

9xy4y23y5y1=0

[[_homogeneous, ‘class G‘], _rational]

8547

x2y2(1+2xy)y+1+y2=0

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

8548

x6y2=8yx+16y

[[_homogeneous, ‘class G‘]]

8549

x2y2=(xy)2

[_linear]

8550

(y+1)2(yyx)=1

[[_1st_order, _with_linear_symmetries], _dAlembert]

8551

y3y2+yxy=0

[[_1st_order, _with_linear_symmetries], _Clairaut]

8552

xy2+y(1x)yy2=0

[_quadrature]

8553

yy2(x+y)y+y=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8554

xy2+(kxy)y+y=0

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

8555

xy32yy2+4x2=0

[[_1st_order, _with_linear_symmetries]]

8556

y+y=0

[[_2nd_order, _missing_x]]

8557

y9y=0

[[_2nd_order, _missing_x]]

8558

y+3yx+3y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

8559

(4x2+1)y8y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

8560

(4x2+1)y+8y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

8561

(x2+1)y4yx+6y=0

[[_2nd_order, _with_linear_symmetries]]

8562

(x2+1)y+10yx+20y=0

[[_2nd_order, _with_linear_symmetries]]

8563

(x2+4)y+2yx12y=0

[[_2nd_order, _with_linear_symmetries]]

8564

(x29)y+3yx3y=0

[[_2nd_order, _with_linear_symmetries]]

8565

y+2yx+5y=0

[[_2nd_order, _with_linear_symmetries]]

8566

(x2+4)y+6yx+4y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

8567

(2x2+1)y5yx+3y=0

[[_2nd_order, _with_linear_symmetries]]

8568

y+x2y=0

[[_Emden, _Fowler]]

8569

(4x2+1)y+6yx4y=0

[_Gegenbauer]

8570

(2x2+1)y+3yx3y=0

[[_2nd_order, _with_linear_symmetries]]

8571

y+x2y+5yx+3y=0

[[_3rd_order, _exact, _linear, _homogeneous]]

8572

y+yx+3y=x2

[[_2nd_order, _linear, _nonhomogeneous]]

8573

y+2yx+2y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

8574

y+3yx+7y=0

[[_2nd_order, _with_linear_symmetries]]

8575

2y+9yx36y=0

[[_2nd_order, _with_linear_symmetries]]

8576

(x2+4)y+yx9y=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8577

(x2+4)y+3yx8y=0

[[_2nd_order, _with_linear_symmetries]]

8578

(9x2+1)y18y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

8579

(3x2+1)y+13yx+7y=0

[[_2nd_order, _exact, _linear, _homogeneous]]

8580

(2x2+1)y+11yx+9y=0

[[_2nd_order, _with_linear_symmetries]]

8581

y2(3+x)y3y=0

[[_2nd_order, _with_linear_symmetries]]

8582

y+(x2)y=0

[[_2nd_order, _with_linear_symmetries]]

8583

(x22x+2)y4(x1)y+6y=0

[[_2nd_order, _with_linear_symmetries]]

8584

2x(x+1)y+3(x+1)yy=0

[[_2nd_order, _exact, _linear, _homogeneous]]

8585

4x2y+4yx+(4x21)y=0

[[_2nd_order, _with_linear_symmetries]]

8586

4x2y+4yx(4x2+1)y=0

[[_2nd_order, _with_linear_symmetries]]

8587

4xy+3y+3y=0

[[_Emden, _Fowler]]

8588

2x2(1x)yx(1+7x)y+y=0

[[_2nd_order, _with_linear_symmetries]]

8589

2xy+5(2x+1)y5y=0

[[_2nd_order, _with_linear_symmetries]]

8590

8x2y+10yx(x+1)y=0

[[_2nd_order, _with_linear_symmetries]]

8591

2xy+(2x)y2y=0

[[_2nd_order, _with_linear_symmetries]]

8592

2x(3+x)y3(x+1)y+2y=0

[[_2nd_order, _with_linear_symmetries]]

8593

2xy+(2x2+1)y4xy=0

[[_2nd_order, _exact, _linear, _homogeneous]]

8594

x(4x)y+(2x)y+4y=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8595

3x2y+yx(x+1)y=0

[[_2nd_order, _with_linear_symmetries]]

8596

2xy+(2x+1)y+4y=0

[[_2nd_order, _with_linear_symmetries]]

8597

2xy+(2x+1)y5y=0

[[_2nd_order, _with_linear_symmetries]]

8598

2x2y3x(1x)y+2y=0

[[_2nd_order, _with_linear_symmetries]]

8599

2x2y+x(4x1)y+2(3x1)y=0

[[_2nd_order, _with_linear_symmetries]]

8600

2xy(2x2+1)yxy=0

[[_2nd_order, _with_linear_symmetries]]