2.2.86 Problems 8501 to 8600

Table 2.173: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8501

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.357

8502

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.368

8503

\[ {}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.359

8504

\[ {}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.363

8505

\[ {}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.366

8506

\[ {}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.366

8507

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.368

8508

\[ {}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.275

8509

\[ {}y^{\prime \prime }-x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.012

8510

\[ {}y^{\prime \prime }-x y-x^{6}+64 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

7.501

8511

\[ {}y^{\prime \prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.547

8512

\[ {}y^{\prime \prime }-x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

5.865

8513

\[ {}y^{\prime \prime }-x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.214

8514

\[ {}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.288

8515

\[ {}y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.935

8516

\[ {}y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

63.403

8517

\[ {}y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.930

8518

\[ {}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8.122

8519

\[ {}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

9.755

8520

\[ {}y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

15.593

8521

\[ {}y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

297.633

8522

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.677

8523

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.578

8524

\[ {}y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.985

8525

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.845

8526

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.685

8527

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.713

8528

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

193.839

8529

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

4.777

8530

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

421.055

8531

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.579

8532

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.791

8533

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.584

8534

\[ {}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.056

8535

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

[[_2nd_order, _missing_x]]

1.092

8536

\[ {}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2} \]
i.c.

[_quadrature]

9.250

8537

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.873

8538

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.937

8539

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.168

8540

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.932

8541

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.960

8542

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.995

8543

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.112

8544

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.929

8545

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

44.620

8546

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

41.816

8547

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

49.402

8548

\[ {}y^{\prime \prime \prime }+y^{\prime }+y = x \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

0.526

8549

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

1.713

8550

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.662

8551

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.388

8552

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.182

8553

\[ {}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x \]

[[_3rd_order, _with_linear_symmetries]]

3.385

8554

\[ {}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0 \]

[[_high_order, _with_linear_symmetries]]

0.286

8555

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.725

8556

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \]

[[_2nd_order, _missing_y]]

1121.960

8557

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.763

8558

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

[NONE]

0.093

8559

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.548

8560

\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.362

8561

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

1.047

8562

\[ {}y^{\prime } = {\mathrm e}^{-\frac {y}{x}} \]

[[_homogeneous, ‘class A‘], _dAlembert]

1.757

8563

\[ {}y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x} \]

[[_homogeneous, ‘class D‘]]

3.070

8564

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.897

8565

\[ {}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3} \]

[_rational, _Bernoulli]

1.536

8566

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.815

8567

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.882

8568

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.874

8569

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.830

8570

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.957

8571

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.876

8572

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.928

8573

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.926

8574

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.915

8575

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.970

8576

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.007

8577

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.973

8578

\[ {}x^{2} y^{\prime \prime }+\left (\cos \left (x \right )-1\right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.122

8579

\[ {}\left (-2+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.877

8580

\[ {}\left (-2+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.949

8581

\[ {}\left (x +1\right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.105

8582

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]
i.c.

[_Lienard]

0.752

8583

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-x y = x^{2}+2 x \]

[[_2nd_order, _with_linear_symmetries]]

1.039

8584

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.874

8585

\[ {}2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.763

8586

\[ {}y^{\prime \prime }+\left (x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.517

8587

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.945

8588

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.064

8589

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.048

8590

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.125

8591

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.006

8592

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right )+\sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.115

8593

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.800

8594

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.023

8595

\[ {}x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (x +1\right ) y^{\prime }-\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.936

8596

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.933

8597

\[ {}{y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \]

[‘y=_G(x,y’)‘]

33.003

8598

\[ {}\left (y-2 x y^{\prime }\right )^{2} = {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

267.458

8599

\[ {}x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.651

8600

\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.746