2.14.20.36 problem 1936 out of 2993

Link to actual problem [9416] \[ \boxed {4 y^{\prime \prime }-\left (x^{2}+a \right ) y=0} \]

type detected by program

{"second_order_bessel_ode"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\operatorname {WhittakerM}\left (-\frac {a}{8}, \frac {1}{4}, \frac {x^{2}}{2}\right )}{\sqrt {x}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {\sqrt {x}\, y}{\operatorname {WhittakerM}\left (-\frac {a}{8}, \frac {1}{4}, \frac {x^{2}}{2}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\operatorname {WhittakerW}\left (-\frac {a}{8}, \frac {1}{4}, \frac {x^{2}}{2}\right )}{\sqrt {x}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {\sqrt {x}\, y}{\operatorname {WhittakerW}\left (-\frac {a}{8}, \frac {1}{4}, \frac {x^{2}}{2}\right )}\right ] \\ \end{align*}