2.14.20.98 problem 1998 out of 2993

Link to actual problem [9514] \[ \boxed {x^{2} y^{\prime \prime }+5 y^{\prime } x -\left (2 x^{3}-4\right ) y=0} \]

type detected by program

{"second_order_bessel_ode"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\operatorname {BesselI}\left (0, \frac {2 \sqrt {2}\, x^{\frac {3}{2}}}{3}\right )}{x^{2}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{2} y}{\operatorname {BesselI}\left (0, \frac {2 \sqrt {2}\, x^{\frac {3}{2}}}{3}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= \frac {\operatorname {BesselK}\left (0, \frac {2 \sqrt {2}\, x^{\frac {3}{2}}}{3}\right )}{x^{2}}\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{2} y}{\operatorname {BesselK}\left (0, \frac {2 \sqrt {2}\, x^{\frac {3}{2}}}{3}\right )}\right ] \\ \end{align*}