2.14.23.87 problem 2287 out of 2993

Link to actual problem [10835] \[ \boxed {y^{\prime \prime }+y^{\prime } a +\left (b x +c \right ) y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-\frac {x a}{2}} \operatorname {AiryAi}\left (-\frac {-a^{2}+4 b x +4 c}{4 b^{\frac {2}{3}}}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{\frac {x a}{2}} y}{\operatorname {AiryAi}\left (\frac {a^{2}-4 b x -4 c}{4 b^{\frac {2}{3}}}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= {\mathrm e}^{-\frac {x a}{2}} \operatorname {AiryBi}\left (-\frac {-a^{2}+4 b x +4 c}{4 b^{\frac {2}{3}}}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {{\mathrm e}^{\frac {x a}{2}} y}{\operatorname {AiryBi}\left (\frac {a^{2}-4 b x -4 c}{4 b^{\frac {2}{3}}}\right )}\right ] \\ \end{align*}