2.14.25.4 problem 2404 out of 2993

Link to actual problem [10969] \[ \boxed {x^{2} y^{\prime \prime }+x \left (a \,x^{n}+b \right ) y^{\prime }+\left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{-\frac {b}{2}-\frac {n}{2}+\frac {1}{2}} {\mathrm e}^{-\frac {a \,x^{n}}{2 n}} \operatorname {WhittakerM}\left (-\frac {a b +a n -a -2 \beta }{2 \sqrt {a^{2}-4 \alpha }\, n}, \frac {\sqrt {b^{2}-2 b -4 \gamma +1}}{2 n}, \frac {\sqrt {a^{2}-4 \alpha }\, x^{n}}{n}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {b}{2}} x^{\frac {n}{2}} {\mathrm e}^{\frac {a \,x^{n}}{2 n}} y}{\sqrt {x}\, \operatorname {WhittakerM}\left (-\frac {\left (b +n -1\right ) a -2 \beta }{2 \sqrt {a^{2}-4 \alpha }\, n}, \frac {\sqrt {b^{2}-2 b -4 \gamma +1}}{2 n}, \frac {\sqrt {a^{2}-4 \alpha }\, x^{n}}{n}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{-\frac {b}{2}-\frac {n}{2}+\frac {1}{2}} {\mathrm e}^{-\frac {a \,x^{n}}{2 n}} \operatorname {WhittakerW}\left (-\frac {a b +a n -a -2 \beta }{2 \sqrt {a^{2}-4 \alpha }\, n}, \frac {\sqrt {b^{2}-2 b -4 \gamma +1}}{2 n}, \frac {\sqrt {a^{2}-4 \alpha }\, x^{n}}{n}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {b}{2}} x^{\frac {n}{2}} {\mathrm e}^{\frac {a \,x^{n}}{2 n}} y}{\sqrt {x}\, \operatorname {WhittakerW}\left (-\frac {\left (b +n -1\right ) a -2 \beta }{2 \sqrt {a^{2}-4 \alpha }\, n}, \frac {\sqrt {b^{2}-2 b -4 \gamma +1}}{2 n}, \frac {\sqrt {a^{2}-4 \alpha }\, x^{n}}{n}\right )}\right ] \\ \end{align*}