2.14.25.5 problem 2405 out of 2993

Link to actual problem [10970] \[ \boxed {x^{2} y^{\prime \prime }+x \left (2 a \,x^{n}+b \right ) y^{\prime }+\left (a^{2} x^{2 n}+a \left (n +b -1\right ) x^{n}+\alpha \,x^{2 m}+\beta \,x^{m}+\gamma \right ) y=0} \]

type detected by program

{"unknown"}

type detected by Maple

[[_2nd_order, _with_linear_symmetries]]

Maple symgen result This shows Maple’s found \(\xi ,\eta \) and the corresponding canonical coordinates \(R,S\)\begin{align*} \\ \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{\frac {1}{2}-\frac {b}{2}-\frac {m}{2}} {\mathrm e}^{-\frac {a \,x^{n}}{n}} \operatorname {WhittakerM}\left (-\frac {i \beta }{2 m \sqrt {\alpha }}, \frac {\sqrt {b^{2}-2 b -4 \gamma +1}}{2 m}, \frac {2 i \sqrt {\alpha }\, x^{m}}{m}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {b}{2}} x^{\frac {m}{2}} {\mathrm e}^{\frac {a \,x^{n}}{n}} y}{\sqrt {x}\, \operatorname {WhittakerM}\left (-\frac {i \beta }{2 m \sqrt {\alpha }}, \frac {\sqrt {b^{2}-2 b -4 \gamma +1}}{2 m}, \frac {2 i \sqrt {\alpha }\, x^{m}}{m}\right )}\right ] \\ \end{align*}

\begin{align*} \left [\underline {\hspace {1.25 ex}}\xi &= 0, \underline {\hspace {1.25 ex}}\eta &= x^{\frac {1}{2}-\frac {b}{2}-\frac {m}{2}} {\mathrm e}^{-\frac {a \,x^{n}}{n}} \operatorname {WhittakerW}\left (-\frac {i \beta }{2 m \sqrt {\alpha }}, \frac {\sqrt {b^{2}-2 b -4 \gamma +1}}{2 m}, \frac {2 i \sqrt {\alpha }\, x^{m}}{m}\right )\right ] \\ \left [R &= x, S \left (R \right ) &= \frac {x^{\frac {b}{2}} x^{\frac {m}{2}} {\mathrm e}^{\frac {a \,x^{n}}{n}} y}{\sqrt {x}\, \operatorname {WhittakerW}\left (-\frac {i \beta }{2 m \sqrt {\alpha }}, \frac {\sqrt {b^{2}-2 b -4 \gamma +1}}{2 m}, \frac {2 i \sqrt {\alpha }\, x^{m}}{m}\right )}\right ] \\ \end{align*}