Optimal. Leaf size=26 \[ \frac {x}{4-e^{\frac {1}{-x+x^2}}+\frac {2}{x}+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 11.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x-5 x^2-2 x^3+3 x^4+e^{\frac {1}{-x+x^2}} \left (x-3 x^2+2 x^3-x^4\right )+\left (x^2-2 x^3+x^4\right ) \log (x)}{4+8 x-12 x^2-16 x^3+16 x^4+e^{\frac {1}{-x+x^2}} \left (-4 x+12 x^3-8 x^4\right )+e^{\frac {2}{-x+x^2}} \left (x^2-2 x^3+x^4\right )+\left (4 x-12 x^3+8 x^4+e^{\frac {1}{-x+x^2}} \left (-2 x^2+4 x^3-2 x^4\right )\right ) \log (x)+\left (x^2-2 x^3+x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left ((-1+x)^2 (4+3 x)-e^{\frac {1}{-x+x^2}} \left (-1+3 x-2 x^2+x^3\right )+(-1+x)^2 x \log (x)\right )}{(1-x)^2 \left (2-\left (-4+e^{\frac {1}{-x+x^2}}\right ) x+x \log (x)\right )^2} \, dx\\ &=\int \left (-\frac {-1+3 x-2 x^2+x^3}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )}-\frac {-2-2 x+13 x^2-4 x^3+x^4-x \log (x)+2 x^2 \log (x)}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}\right ) \, dx\\ &=-\int \frac {-1+3 x-2 x^2+x^3}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )} \, dx-\int \frac {-2-2 x+13 x^2-4 x^3+x^4-x \log (x)+2 x^2 \log (x)}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx\\ &=-\int \left (\frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )}+\frac {2}{(-1+x) \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )}+\frac {x}{-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)}\right ) \, dx-\int \left (-\frac {2}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}-\frac {2 x}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}+\frac {13 x^2}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}-\frac {4 x^3}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}+\frac {x^4}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}-\frac {x \log (x)}{(-1+x)^2 \left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2}+\frac {2 x^2 \log (x)}{(-1+x)^2 \left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2}\right ) \, dx\\ &=2 \int \frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx+2 \int \frac {x}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-2 \int \frac {1}{(-1+x) \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )} \, dx-2 \int \frac {x^2 \log (x)}{(-1+x)^2 \left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2} \, dx+4 \int \frac {x^3}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-13 \int \frac {x^2}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-\int \frac {x^4}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-\int \frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )} \, dx-\int \frac {x}{-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)} \, dx+\int \frac {x \log (x)}{(-1+x)^2 \left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2} \, dx\\ &=2 \int \frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-2 \int \frac {1}{(-1+x) \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )} \, dx+2 \int \left (\frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}+\frac {1}{(-1+x) \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}\right ) \, dx-2 \int \left (\frac {\log (x)}{\left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2}+\frac {\log (x)}{(-1+x)^2 \left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2}+\frac {2 \log (x)}{(-1+x) \left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2}\right ) \, dx+4 \int \left (\frac {2}{\left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}+\frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}+\frac {3}{(-1+x) \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}+\frac {x}{\left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}\right ) \, dx-13 \int \left (\frac {1}{\left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}+\frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}+\frac {2}{(-1+x) \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}\right ) \, dx-\int \frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )} \, dx-\int \frac {x}{-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)} \, dx-\int \left (\frac {3}{\left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}+\frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}+\frac {4}{(-1+x) \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}+\frac {2 x}{\left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}+\frac {x^2}{\left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2}\right ) \, dx+\int \left (\frac {\log (x)}{(-1+x)^2 \left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2}+\frac {\log (x)}{(-1+x) \left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2}\right ) \, dx\\ &=2 \left (2 \int \frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx\right )+2 \int \frac {1}{(-1+x) \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-2 \int \frac {x}{\left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-2 \int \frac {1}{(-1+x) \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )} \, dx-2 \int \frac {\log (x)}{\left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2} \, dx-2 \int \frac {\log (x)}{(-1+x)^2 \left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2} \, dx-3 \int \frac {1}{\left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx+4 \int \frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-4 \int \frac {1}{(-1+x) \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx+4 \int \frac {x}{\left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-4 \int \frac {\log (x)}{(-1+x) \left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2} \, dx+8 \int \frac {1}{\left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx+12 \int \frac {1}{(-1+x) \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-13 \int \frac {1}{\left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-13 \int \frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-26 \int \frac {1}{(-1+x) \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-\int \frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-\int \frac {x^2}{\left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )^2} \, dx-\int \frac {1}{(-1+x)^2 \left (-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)\right )} \, dx-\int \frac {x}{-2-4 x+e^{\frac {1}{-x+x^2}} x-x \log (x)} \, dx+\int \frac {\log (x)}{(-1+x)^2 \left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2} \, dx+\int \frac {\log (x)}{(-1+x) \left (2+4 x-e^{\frac {1}{-x+x^2}} x+x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.10, size = 28, normalized size = 1.08 \begin {gather*} \frac {x^2}{2-\left (-4+e^{\frac {1}{(-1+x) x}}\right ) x+x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 29, normalized size = 1.12 \begin {gather*} -\frac {x^{2}}{x e^{\left (\frac {1}{x^{2} - x}\right )} - x \log \relax (x) - 4 \, x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 29, normalized size = 1.12 \begin {gather*} -\frac {x^{2}}{x e^{\left (\frac {1}{x^{2} - x}\right )} - x \log \relax (x) - 4 \, x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 1.15
method | result | size |
risch | \(-\frac {x^{2}}{{\mathrm e}^{\frac {1}{x \left (x -1\right )}} x -x \ln \relax (x )-4 x -2}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 35, normalized size = 1.35 \begin {gather*} -\frac {x^{2} e^{\frac {1}{x}}}{x e^{\left (\frac {1}{x - 1}\right )} - {\left (x \log \relax (x) + 4 \, x + 2\right )} e^{\frac {1}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.53, size = 153, normalized size = 5.88 \begin {gather*} -\frac {x\,{\left (x^3-2\,x^2+x\right )}^2\,\left (-x^4+4\,x^3-13\,x^2+2\,x+2\right )+x\,\ln \relax (x)\,\left (x-2\,x^2\right )\,{\left (x^3-2\,x^2+x\right )}^2}{{\left (x-1\right )}^2\,\left (4\,x-x\,{\mathrm {e}}^{-\frac {1}{x-x^2}}+x\,\ln \relax (x)+2\right )\,\left (4\,x^3\,\ln \relax (x)-x^2\,\ln \relax (x)-2\,x-5\,x^4\,\ln \relax (x)+2\,x^5\,\ln \relax (x)+2\,x^2+15\,x^3-32\,x^4+22\,x^5-6\,x^6+x^7\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 24, normalized size = 0.92 \begin {gather*} - \frac {x^{2}}{x e^{\frac {1}{x^{2} - x}} - x \log {\relax (x )} - 4 x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________