2.45 Problems 4401 to 4500

Table 2.45: Main lookup table

#

ODE

Mathematica result

Maple result

4401

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

4402

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

4403

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

4404

\[ {}y^{\prime }-\sin \left (x +y\right ) = 0 \]

4405

\[ {}y^{\prime } = 4 y^{2}-3 y+1 \]

4406

\[ {}s^{\prime } = t \ln \left (s^{2 t}\right )+8 t^{2} \]

4407

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \]

4408

\[ {}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0 \]

4409

\[ {}s^{2}+s^{\prime } = \frac {s+1}{s t} \]

4410

\[ {}x y^{\prime } = \frac {1}{y^{3}} \]

4411

\[ {}x^{\prime } = 3 x t^{2} \]

4412

\[ {}x^{\prime } = \frac {t \,{\mathrm e}^{-t -2 x}}{x} \]

4413

\[ {}y^{\prime } = \frac {x}{y^{2} \sqrt {1+x}} \]

4414

\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \]

4415

\[ {}y^{\prime } = \frac {\sec ^{2}\relax (y)}{x^{2}+1} \]

4416

\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{\frac {3}{2}} \]

4417

\[ {}x^{\prime }-x^{3} = x \]

4418

\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \]

4419

\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \relax (x )} \sin \relax (x ) = 0 \]

4420

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \relax (x ) \]

4421

\[ {}y^{\prime } = x^{3} \left (1-y\right ) \]

4422

\[ {}\frac {y^{\prime }}{2} = \sqrt {y+1}\, \cos \relax (x ) \]

4423

\[ {}x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (1+x \right ) \left (y+1\right )} \]

4424

\[ {}\frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1} \]

4425

\[ {}x^{2}+2 y y^{\prime } = 0 \]

4426

\[ {}y^{\prime } = 2 t \left (\cos ^{2}\relax (y)\right ) \]

4427

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]

4428

\[ {}y^{\prime } = x^{2} \left (y+1\right ) \]

4429

\[ {}\sqrt {y}+\left (1+x \right ) y^{\prime } = 0 \]

4430

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]

4431

\[ {}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}} \]

4432

\[ {}y^{\prime } = \sqrt {\sin \relax (x )+1}\, \left (1+y^{2}\right ) \]

4433

\[ {}y^{\prime } = 2 y-2 t y \]

4434

\[ {}y^{\prime } = y^{\frac {1}{3}} \]

4435

\[ {}y^{\prime } = y^{\frac {1}{3}} \]

4436

\[ {}y^{\prime } = \left (x -3\right ) \left (y+1\right )^{\frac {2}{3}} \]

4437

\[ {}y^{\prime } = x y^{3} \]

4438

\[ {}y^{\prime } = x y^{3} \]

4439

\[ {}y^{\prime } = x y^{3} \]

4440

\[ {}y^{\prime } = x y^{3} \]

4441

\[ {}y^{\prime } = y^{2}-3 y+2 \]

4442

\[ {}x^{2} y^{\prime }+\sin \relax (x )-y = 0 \]

4443

\[ {}x^{\prime }+x t = {\mathrm e}^{x} \]

4444

\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \]

4445

\[ {}3 t = {\mathrm e}^{t} y^{\prime }+y \ln \relax (t ) \]

4446

\[ {}x x^{\prime }+x t^{2} = \sin \relax (t ) \]

4447

\[ {}3 r = r^{\prime }-\theta ^{3} \]

4448

\[ {}y^{\prime }-y-{\mathrm e}^{3 x} = 0 \]

4449

\[ {}y^{\prime } = \frac {y}{x}+2 x +1 \]

4450

\[ {}r^{\prime }+r \tan \left (\theta \right ) = \sec \left (\theta \right ) \]

4451

\[ {}x y^{\prime }+2 y = \frac {1}{x^{3}} \]

4452

\[ {}t +y+1-y^{\prime } = 0 \]

4453

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y \]

4454

\[ {}y y^{\prime }+2 x = 5 y^{3} \]

4455

\[ {}x y^{\prime }+3 x^{2}+3 y = \frac {\sin \relax (x )}{x} \]

4456

\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-x = 0 \]

4457

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2} y = \left (1+x \right ) \sqrt {-x^{2}+1} \]

4458

\[ {}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x} \]

4459

\[ {}y^{\prime }+4 y-{\mathrm e}^{-x} = 0 \]

4460

\[ {}t^{2} x^{\prime }+3 x t = t^{4} \ln \relax (t )+1 \]

4461

\[ {}y^{\prime }+\frac {3 y}{x}+2 = 3 x \]

4462

\[ {}\cos \relax (x ) y^{\prime }+\sin \relax (x ) y = 2 x \left (\cos ^{2}\relax (x )\right ) \]

4463

\[ {}\sin \relax (x ) y^{\prime }+y \cos \relax (x ) = x \sin \relax (x ) \]

4464

\[ {}y^{\prime }+y \sqrt {1+\sin ^{2}\relax (x )} = x \]

4465

\[ {}\left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1 = 0 \]

4466

\[ {}y^{\prime }+2 y = \frac {x}{y^{2}} \]

4467

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2} \]

4468

\[ {}x^{\prime } = \alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x \]

4469

\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \]

4470

\[ {}x^{2} y+x^{4} \cos \relax (x )-x^{3} y^{\prime } = 0 \]

4471

\[ {}x^{\frac {10}{3}}-2 y+x y^{\prime } = 0 \]

4472

\[ {}\sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0 \]

4473

\[ {}y \,{\mathrm e}^{x y}+2 x +\left (x \,{\mathrm e}^{x y}-2 y\right ) y^{\prime } = 0 \]

4474

\[ {}y^{\prime }+x y = 0 \]

4475

\[ {}y^{2}+\left (2 x y+\cos \relax (y)\right ) y^{\prime } = 0 \]

4476

\[ {}2 x +y \cos \left (x y\right )+\left (x \cos \left (x y\right )-2 y\right ) y^{\prime } = 0 \]

4477

\[ {}\theta r^{\prime }+3 r-\theta -1 = 0 \]

4478

\[ {}2 x y+3+\left (x^{2}-1\right ) y^{\prime } = 0 \]

4479

\[ {}2 x +y+\left (x -2 y\right ) y^{\prime } = 0 \]

4480

\[ {}{\mathrm e}^{x} \sin \relax (y)-3 x^{2}+\left ({\mathrm e}^{x} \cos \relax (y)+\frac {1}{3 y^{\frac {2}{3}}}\right ) y^{\prime } = 0 \]

4481

\[ {}\cos \relax (x ) \cos \relax (y)+2 x -\left (\sin \relax (x ) \sin \relax (y)+2 y\right ) y^{\prime } = 0 \]

4482

\[ {}{\mathrm e}^{t} \left (y-t \right )+\left (1+{\mathrm e}^{t}\right ) y^{\prime } = 0 \]

4483

\[ {}\frac {t y^{\prime }}{y}+1+\ln \relax (y) = 0 \]

4484

\[ {}\cos \left (\theta \right ) r^{\prime }-r \sin \left (\theta \right )+{\mathrm e}^{\theta } = 0 \]

4485

\[ {}y \,{\mathrm e}^{x y}-\frac {1}{y}+\left (x \,{\mathrm e}^{x y}+\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

4486

\[ {}\frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

4487

\[ {}2 x +y^{2}-\cos \left (x +y\right )-\left (2 x y-\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

4488

\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{y-1} \]

4489

\[ {}y^{\prime }-4 y = 32 x^{2} \]

4490

\[ {}\left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 x y-3 x^{2} = 0 \]

4491

\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \]

4492

\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \]

4493

\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

4494

\[ {}\left (1+x \right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y = 0 \]

4495

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

4496

\[ {}\left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+\sin \relax (x ) y = 0 \]

4497

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 x y = 0 \]

4498

\[ {}\left (t^{2}-t -2\right ) x^{\prime \prime }+\left (t +1\right ) x^{\prime }-\left (t -2\right ) x = 0 \]

4499

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+\left (x^{2}-2 x +1\right ) y = 0 \]

4500

\[ {}\sin \relax (x ) y^{\prime \prime }+y \cos \relax (x ) = 0 \]