# |
ODE |
Mathematica result |
Maple result |
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\sin \left (x +y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 4 y^{2}-3 y+1 \] |
✓ |
✓ |
|
\[ {}s^{\prime } = t \ln \left (s^{2 t}\right )+8 t^{2} \] |
✓ |
✗ |
|
\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{x +y}}{x^{2}+2} \] |
✓ |
✓ |
|
\[ {}\left (x y^{2}+3 y^{2}\right ) y^{\prime }-2 x = 0 \] |
✓ |
✓ | |
\[ {}s^{2}+s^{\prime } = \frac {s+1}{s t} \] |
✗ |
✗ |
|
\[ {}x y^{\prime } = \frac {1}{y^{3}} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = 3 x t^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \frac {t \,{\mathrm e}^{-t -2 x}}{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x}{y^{2} \sqrt {x +1}} \] |
✓ |
✓ |
|
\[ {}x v^{\prime } = \frac {1-4 v^{2}}{3 v} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {\sec ^{2}\relax (y)}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}x^{\prime }-x^{3} = x \] |
✓ |
✓ |
|
\[ {}x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \relax (x )} \sin \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{3} \left (1-y\right ) \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{2} = \sqrt {y+1}\, \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (x +1\right ) \left (y+1\right )} \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1} \] |
✓ |
✓ |
|
\[ {}x^{2}+2 y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 t \left (\cos ^{2}\relax (y)\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} \left (y+1\right ) \] |
✓ |
✓ |
|
\[ {}\sqrt {y}+\left (x +1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sqrt {\sin \relax (x )+1}\, \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y-2 t y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{\frac {1}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x -3\right ) \left (y+1\right )^{\frac {2}{3}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-3 y+2 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+\sin \relax (x )-y = 0 \] |
✓ |
✓ | |
\[ {}x^{\prime }+x t = {\mathrm e}^{x} \] |
✗ |
✗ |
|
\[ {}\left (t^{2}+1\right ) y^{\prime } = t y-y \] |
✓ |
✓ |
|
\[ {}3 t = {\mathrm e}^{t} y^{\prime }+y \ln \relax (t ) \] |
✓ |
✓ | |
\[ {}x x^{\prime }+x t^{2} = \sin \relax (t ) \] |
✗ |
✗ |
|
\[ {}3 r = r^{\prime }-\theta ^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y-{\mathrm e}^{3 x} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+2 x +1 \] | ✓ | ✓ |
|
\[ {}r^{\prime }+r \tan \left (\theta \right ) = \sec \left (\theta \right ) \] | ✓ | ✓ |
|
\[ {}x y^{\prime }+2 y = \frac {1}{x^{3}} \] |
✓ |
✓ |
|
\[ {}t +y+1-y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y \] |
✓ |
✓ |
|
\[ {}y y^{\prime }+2 x = 5 y^{3} \] |
✗ |
✗ |
|
\[ {}x y^{\prime }+3 x^{2}+3 y = \frac {\sin \relax (x )}{x} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+x y-x = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime }-x^{2} y = \left (x +1\right ) \sqrt {-x^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 y-{\mathrm e}^{-x} = 0 \] |
✓ |
✓ |
|
\[ {}t^{2} x^{\prime }+3 x t = t^{4} \ln \relax (t )+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {3 y}{x}+2 = 3 x \] |
✓ |
✓ |
|
\[ {}\cos \relax (x ) y^{\prime }+y \sin \relax (x ) = 2 x \left (\cos ^{2}\relax (x )\right ) \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) y^{\prime }+y \cos \relax (x ) = x \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \sqrt {1+\sin ^{2}\relax (x )} = x \] |
✓ |
✓ |
|
\[ {}\left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = \frac {x}{y^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {3 y}{x} = x^{2} \] |
✓ |
✓ |
|
\[ {}x^{\prime } = \alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x \] |
✓ |
✓ |
|
\[ {}u^{\prime } = \alpha \left (1-u\right )-\beta u \] |
✓ |
✓ |
|
\[ {}x^{2} y+x^{4} \cos \relax (x )-x^{3} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{\frac {10}{3}}-2 y+x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \,{\mathrm e}^{x y}+2 x +\left (x \,{\mathrm e}^{x y}-2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = 0 \] |
✓ |
✓ |
|
\[ {}y^{2}+\left (2 x y+\cos \relax (y)\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +y \cos \left (x y\right )+\left (x \cos \left (x y\right )-2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\theta r^{\prime }+3 r-\theta -1 = 0 \] |
✓ |
✓ |
|
\[ {}2 x y+3+\left (x^{2}-1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +y+\left (x -2 y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{x} \sin \relax (y)-3 x^{2}+\left ({\mathrm e}^{x} \cos \relax (y)+\frac {1}{3 y^{\frac {2}{3}}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \relax (x ) \cos \relax (y)+2 x -\left (\sin \relax (x ) \cos \relax (y)+2 y\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}{\mathrm e}^{t} \left (y-t \right )+\left (1+{\mathrm e}^{t}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {t y^{\prime }}{y}+1+\ln \relax (y) = 0 \] |
✓ |
✓ |
|
\[ {}\cos \left (\theta \right ) r^{\prime }-r \sin \left (\theta \right )+{\mathrm e}^{\theta } = 0 \] |
✓ |
✓ |
|
\[ {}y \,{\mathrm e}^{x y}-\frac {1}{y}+\left (x \,{\mathrm e}^{x y}+\frac {x}{y^{2}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x +y^{2}-\cos \left (x +y\right )-\left (2 x y-\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime } = \frac {{\mathrm e}^{x +y}}{y-1} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-4 y = 32 x^{2} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 x y-3 x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3 \] |
✓ |
✓ |
|
\[ {}2 x y^{3}-\left (-x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +1\right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \] |
✓ |
✗ |
|
\[ {}\left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+y \sin \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (t^{2}-t -2\right ) x^{\prime \prime }+\left (t +1\right ) x^{\prime }-\left (t -2\right ) x = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+\left (x^{2}-2 x +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) y^{\prime \prime }+y \cos \relax (x ) = 0 \] |
✓ |
✓ |
|