# |
ODE |
Mathematica result |
Maple result |
\[ {}{\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 x y = 0 \] |
✓ |
✓ | |
\[ {}\sin \relax (x ) y^{\prime \prime }-y \ln \relax (x ) = 0 \] |
✗ |
✗ |
|
\[ {}y^{\prime }+\left (2+x \right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}z^{\prime }-x^{2} z = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}w^{\prime \prime }-x^{2} w^{\prime }+w = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 x -3\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +1\right ) y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+x +1\right ) y^{\prime \prime }-3 y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-5 x +6\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\tan \relax (x ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+1\right ) y^{\prime \prime }-x y^{\prime }+2 x^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 \left (x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 x y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime }+\sin \relax (t ) x = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \,{\mathrm e}^{x} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-{\mathrm e}^{2 x} y^{\prime }+y \cos \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}w^{\prime }+w x = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}z^{\prime \prime }+x z^{\prime }+z = x^{2}+2 x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 x y^{\prime }+3 y = x^{2} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-x y^{\prime }+2 y = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y \sin \relax (x ) = \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }-\omega ^{2} x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+42 x^{\prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime \prime \prime }+x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0 \] |
✓ |
✓ |
|
\[ {}x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = \cosh \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = {\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+2 x y-x +1 = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \left (x +1\right )^{2} \] | ✓ | ✓ |
|
\[ {}x^{2} y^{\prime }+2 x y = \sinh \relax (x ) \] | ✓ | ✓ |
|
\[ {}y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+x y \] |
✓ |
✓ |
|
\[ {}y^{\prime }+x y = x y^{2} \] |
✓ |
✓ |
|
\[ {}3 x y^{\prime }+y+x^{2} y^{4} = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (-2 x +1\right ) y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+x y^{\prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {2 y}{x}-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {2 y}{x}-x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+m y = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{2}+2 x -3 \] |
✓ |
✓ |
|
\[ {}\left (x +1\right )^{2} y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = x^{3} \sin \left (3 x \right )+4 \] |
✓ |
✓ |
|
\[ {}x \cos \relax (y) y^{\prime }-\sin \relax (y) = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+x y^{2}\right ) y^{\prime } = 2 y^{3} \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y = x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tanh \relax (x ) = 2 \sinh \relax (x ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-2 y = x^{3} \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {y}{x} = y^{3} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+3 y = x^{2} y^{2} \] |
✓ |
✓ |
|
\[ {}x \left (y-3\right ) y^{\prime } = 4 y \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+1\right ) y^{\prime } = x^{2} y \] |
✓ |
✓ |
|
\[ {}x^{3}+\left (y+1\right )^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \relax (y)+\left (1+{\mathrm e}^{-x}\right ) \sin \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} \left (y+1\right )+y^{2} \left (x -1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (2 y-x \right ) y^{\prime } = 2 x +y \] |
✓ |
✓ |
|
\[ {}x y+y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{3}+y^{3} = 3 x y^{2} y^{\prime } \] |
✓ |
✓ |
|
\[ {}y-3 x +\left (4 y+3 x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{3}+3 x^{2}-2 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \relax (x ) = \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{3} \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime }+3 x y = 5 x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \relax (x ) = 5 \,{\mathrm e}^{\cos \relax (x )} \] |
✓ |
✓ |
|
\[ {}\left (3 x +3 y-4\right ) y^{\prime } = -x -y \] |
✓ |
✓ |
|
\[ {}x -x y^{2} = \left (x +x^{2} y\right ) y^{\prime } \] |
✓ |
✓ |
|
\[ {}x -y-1+\left (4 y+x -1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (1+x y\right )+x \left (1+x y+x^{2} y^{2}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = x y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = y^{4} {\mathrm e}^{x} \] |
✓ |
✓ |
|