2.51 Problems 5001 to 5100

Table 2.51: Main lookup table

#

ODE

Mathematica result

Maple result

5001

\[ {}-y+x y^{\prime } = x \tan \left (\frac {y}{x}\right ) \]

5002

\[ {}x y^{\prime } = y-x \,{\mathrm e}^{\frac {y}{x}} \]

5003

\[ {}-y+x y^{\prime } = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \]

5004

\[ {}x y^{\prime } = y \cos \left (\frac {y}{x}\right ) \]

5005

\[ {}y+\sqrt {x y}-x y^{\prime } = 0 \]

5006

\[ {}x y^{\prime }-\sqrt {x^{2}-y^{2}}-y = 0 \]

5007

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

5008

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

5009

\[ {}-y+x y^{\prime } = y y^{\prime } \]

5010

\[ {}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

5011

\[ {}y^{2}+x y+x^{2} = x^{2} y^{\prime } \]

5012

\[ {}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

5013

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

5014

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]

5015

\[ {}x y^{\prime } = y+\sqrt {y^{2}-x^{2}} \]

5016

\[ {}y+\left (2 \sqrt {x y}-x \right ) y^{\prime } = 0 \]

5017

\[ {}x y^{\prime } = y \ln \left (\frac {y}{x}\right ) \]

5018

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]

5019

\[ {}\left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \]

5020

\[ {}x^{2} \left (y^{\prime }\right )^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

5021

\[ {}-y+x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

5022

\[ {}y \left (y^{\prime }\right )^{2}+2 x y^{\prime }-y = 0 \]

5023

\[ {}y^{\prime }+\frac {2 y+x}{x} = 0 \]

5024

\[ {}y^{\prime } = \frac {y}{x +y} \]

5025

\[ {}x y^{\prime } = x +\frac {y}{2} \]

5026

\[ {}y^{\prime } = \frac {x +y-2}{y-x -4} \]

5027

\[ {}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0 \]

5028

\[ {}y^{\prime } = \frac {2 y-x +5}{2 x -y-4} \]

5029

\[ {}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7} \]

5030

\[ {}y^{\prime } = \frac {x +3 y-5}{x -y-1} \]

5031

\[ {}y^{\prime } = \frac {2 \left (2+y\right )^{2}}{\left (1+x +y\right )^{2}} \]

5032

\[ {}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0 \]

5033

\[ {}x -y-1+\left (-x +y+2\right ) y^{\prime } = 0 \]

5034

\[ {}\left (x +4 y\right ) y^{\prime } = 2 x +3 y-5 \]

5035

\[ {}2+y = \left (2 x +y-4\right ) y^{\prime } \]

5036

\[ {}\left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3} \]

5037

\[ {}y^{\prime } = \frac {x -2 y+5}{y-2 x -4} \]

5038

\[ {}y^{\prime } = \frac {3 x -y+1}{2 x +y+4} \]

5039

\[ {}2 x y^{\prime }+\left (x^{2} y^{4}+1\right ) y = 0 \]

5040

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

5041

\[ {}x^{3} \left (y^{\prime }-x \right ) = y^{2} \]

5042

\[ {}2 x^{2} y^{\prime } = y^{3}+x y \]

5043

\[ {}y+x \left (2 x y+1\right ) y^{\prime } = 0 \]

5044

\[ {}2 y^{\prime }+x = 4 \sqrt {y} \]

5045

\[ {}y^{\prime } = y^{2}-\frac {2}{x^{2}} \]

5046

\[ {}2 x y^{\prime }+y = y^{2} \sqrt {x -x^{2} y^{2}} \]

5047

\[ {}\frac {2 x y y^{\prime }}{3} = \sqrt {x^{6}-y^{4}}+y^{2} \]

5048

\[ {}2 y+\left (x^{2} y+1\right ) x y^{\prime } = 0 \]

5049

\[ {}y \left (1+x y\right )+\left (1-x y\right ) x y^{\prime } = 0 \]

5050

\[ {}y \left (x^{2} y^{2}+1\right )+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

5051

\[ {}\left (x^{2}-y^{4}\right ) y^{\prime }-x y = 0 \]

5052

\[ {}y \left (1+\sqrt {x^{2} y^{4}-1}\right )+2 x y^{\prime } = 0 \]

5053

\[ {}x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime } = 0 \]

5054

\[ {}\frac {y}{x}+\left (y^{3}+\ln \relax (x )\right ) y^{\prime } = 0 \]

5055

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

5056

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

5057

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

5058

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

5059

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

5060

\[ {}y^{\prime \prime }-\cot \relax (x ) y^{\prime }+y \cos \relax (x ) = 0 \]

5061

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]

5062

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

5063

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

5064

\[ {}y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0 \]

5065

\[ {}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

5066

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

5067

\[ {}x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0 \]

5068

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

5069

\[ {}y^{\prime \prime }+x y^{\prime }+y = 2 x \,{\mathrm e}^{x}-1 \]

5070

\[ {}x y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

5071

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

5072

\[ {}x^{3} y^{\prime \prime }+x y^{\prime }-y = \cos \left (\frac {1}{x}\right ) \]

5073

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (2+x \right ) y^{\prime }-y = x +\frac {1}{x} \]

5074

\[ {}2 x y^{\prime \prime }+\left (-2+x \right ) y^{\prime }-y = x^{2}-1 \]

5075

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x} \]

5076

\[ {}x^{2} \left (\ln \relax (x )-1\right ) y^{\prime \prime }-x y^{\prime }+y = x \left (1-\ln \relax (x )\right )^{2} \]

5077

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = \sec \relax (x ) \]

5078

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

5079

\[ {}\left (\cos \relax (x )+\sin \relax (x )\right ) y^{\prime \prime }-2 \cos \relax (x ) y^{\prime }+\left (\cos \relax (x )-\sin \relax (x )\right ) y = \left (\cos \relax (x )+\sin \relax (x )\right )^{2} {\mathrm e}^{2 x} \]

5080

\[ {}\left (\cos \relax (x )-\sin \relax (x )\right ) y^{\prime \prime }-2 \sin \relax (x ) y^{\prime }+\left (\cos \relax (x )+\sin \relax (x )\right ) y = \left (\cos \relax (x )-\sin \relax (x )\right )^{2} \]

5081

\[ {}y^{\prime } = x^{2} \left (1+y^{2}\right ) \]

5082

\[ {}y^{\prime } = \frac {x^{2}}{1-y^{2}} \]

5083

\[ {}y^{\prime } = \frac {3 x^{2}+4 x +2}{2 y-2} \]

5084

\[ {}x y^{\prime }-2 \sqrt {x y} = y \]

5085

\[ {}y^{\prime } = \frac {x +y-1}{x -y+3} \]

5086

\[ {}{\mathrm e}^{x}+y+\left (x -2 \sin \relax (y)\right ) y^{\prime } = 0 \]

5087

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

5088

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

5089

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

5090

\[ {}y^{\prime } = \frac {y}{2 x}+\frac {x^{2}}{2 y} \]

5091

\[ {}y^{\prime } = -\frac {2}{t}+\frac {y}{t}+\frac {y^{2}}{t} \]

5092

\[ {}y^{\prime } = -\frac {y}{t}-1-y^{2} \]

5093

\[ {}x +y y^{\prime } = a \left (y^{\prime }\right )^{2} \]

5094

\[ {}\left (y^{\prime }\right )^{2}-a^{2} y^{2} = 0 \]

5095

\[ {}\left (y^{\prime }\right )^{2} = 4 x^{2} \]

5096

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

5097

\[ {}s^{\prime \prime }+2 s^{\prime }+s = 0 \]

5098

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

5099

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 x +1 \]

5100

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{2 x} \]