# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime \prime }+y = 4 \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \relax (x ) \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) u^{\prime \prime }+2 \cos \relax (x ) u^{\prime }+\sin \relax (x ) u = 0 \] |
✓ |
✓ |
|
\[ {}3 \left (y^{\prime \prime }\right )^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } \left (y^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y y^{\prime \prime } = x^{2} \left (y^{\prime }\right )^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 4 \,{\mathrm e}^{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 3 \sin \relax (t )-5 \cos \relax (t ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = g \relax (t ) \] |
✓ |
✓ |
|
\[ {}y^{\relax (5)}-\frac {y^{\prime \prime \prime \prime }}{t} = 0 \] |
✓ |
✓ |
|
\[ {}x x^{\prime \prime }-\left (x^{\prime }\right )^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \relax (x ) \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }-\left (1+2 x \right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y+\sqrt {x^{2}+y^{2}}-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2} = a^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}y \left (x^{2} y^{2}+1\right )+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x^{3} y^{2}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\frac {1}{y}+\sec \left (\frac {y}{x}\right )-\frac {x y^{\prime }}{y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\phi ^{\prime }-\frac {\phi ^{2}}{2}-\phi \cot \left (\theta \right ) = 0 \] |
✓ |
✓ |
|
\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (\phi ^{\prime }-\frac {\phi ^{2}}{2}\right ) \left (\sin ^{2}\left (\theta \right )\right )-\phi \sin \left (\theta \right ) \cos \left (\theta \right ) = \frac {\cos \left (2 \theta \right )}{2}+1 \] |
✓ |
✓ |
|
\[ {}a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+\left (y^{\prime \prime }\right )^{2}} \] |
✓ |
✓ |
|
\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \] |
✓ |
✓ |
|
\[ {}y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (x +1\right ) \eta ^{\prime }+\left (k +1\right ) \eta = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}-y^{2}+2 x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{2}+y^{2} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x \sqrt {x^{2}-y^{2}}\, y^{\prime } \] |
✓ |
✓ |
|
\[ {}x +y y^{\prime }+y-x y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime \prime }-\left (y^{\prime }\right )^{2}-y^{2} y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-18 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-9 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+3 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 5 x_{1}\relax (t )+3 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )+3 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+5 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 5 x_{1}\relax (t )+2 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -2 x_{1}\relax (t )+x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t )] \] | ✓ | ✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -2 x_{1}\relax (t )+x_{2}\relax (t )+2 \,{\mathrm e}^{-t}, x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t )+3 t] \] | ✓ | ✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 16 x_{1}\relax (t )-5 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )-2 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-4 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-18 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-9 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1}\relax (t )+3 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = -3 x_{1}\relax (t )+5 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-18 x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1}\relax (t )-9 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1}\relax (t )-x_{2}\relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1}\relax (t )-2 x_{2}\relax (t )] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )-8, x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )+3] \] |
✓ |
✓ |
|
\[ {}[x_{1}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )-8, x_{2}^{\prime }\relax (t ) = x_{1}\relax (t )+x_{2}\relax (t )+3] \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{3 x}+\sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 2+x \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime \prime } = x^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cos \relax (x ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cos \relax (x ) = \sin \relax (x ) \cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+4 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+k^{2} y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+5 y = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 3 x +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = k y \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = {\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 y = x^{2}+x \] |
✓ |
✓ |
|
\[ {}3 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+3 y = {\mathrm e}^{i x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+i y = x \] |
✓ |
✓ |
|
\[ {}L y^{\prime }+R y = E \] |
✓ |
✓ |
|
\[ {}L y^{\prime }+R y = E \sin \left (\omega x \right ) \] |
✓ |
✓ |
|
\[ {}L y^{\prime }+R y = E \,{\mathrm e}^{i \omega x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+a y = b \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = x \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = 3 x^{3}-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \relax (x ) = {\mathrm e}^{\sin \relax (x )} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cos \relax (x ) = {\mathrm e}^{-\sin \relax (x )} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+2 x y = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 y = b \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y+1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1+y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y = 0 \] |
✓ |
✓ |
|
\[ {}3 y^{\prime \prime }+2 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+16 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+2 i y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime \prime }+y = 0 \] |
✓ |
✓ |
|