2.112 Problems 11101 to 11200

Table 2.223: Main lookup table

#

ODE

Mathematica result

Maple result

11101

\[ {}y^{\prime \prime }+a \left (\lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{2 \lambda x}\right ) y = 0 \]

11102

\[ {}y^{\prime \prime }-\left (a^{2} {\mathrm e}^{2 x}+a \left (2 b +1\right ) {\mathrm e}^{x}+b^{2}\right ) y = 0 \]

11103

\[ {}y^{\prime \prime }-\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+c \right ) y = 0 \]

11104

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{4 \lambda x}+b \,{\mathrm e}^{3 \lambda x}+c \,{\mathrm e}^{2 \lambda x}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

11105

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

11106

\[ {}y^{\prime \prime }+a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

11107

\[ {}y^{\prime \prime }-a y^{\prime }+b \,{\mathrm e}^{2 a x} y = 0 \]

11108

\[ {}y^{\prime \prime }+a y^{\prime }+\left (b \,{\mathrm e}^{\lambda x}+c \right ) y = 0 \]

11109

\[ {}y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{3 \lambda x}+b \,{\mathrm e}^{2 \lambda x}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

11110

\[ {}y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

11111

\[ {}y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left ({\mathrm e}^{\lambda x} a +\lambda \right ) y = 0 \]

11112

\[ {}y^{\prime \prime }+\left (a +b \right ) {\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\lambda x}+\lambda \right ) y = 0 \]

11113

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y^{\prime }-b \,{\mathrm e}^{\mu x} \left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{\mu x}+\mu \right ) y = 0 \]

11114

\[ {}y^{\prime \prime }+2 k \,{\mathrm e}^{\mu x} y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+k^{2} {\mathrm e}^{2 \mu x}+k \mu \,{\mathrm e}^{\mu x}+c \right ) y = 0 \]

11115

\[ {}y^{\prime \prime }-\left (a +2 b \,{\mathrm e}^{a x}\right ) y^{\prime }+b^{2} {\mathrm e}^{2 a x} y = 0 \]

11116

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x}+\lambda \right ) y^{\prime }-a \lambda \,{\mathrm e}^{2 \lambda x} y = 0 \]

11117

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+b \,{\mathrm e}^{2 \lambda x} y = 0 \]

11118

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \right ) y^{\prime }+c \left ({\mathrm e}^{\lambda x} a +b -c \right ) y = 0 \]

11119

\[ {}y^{\prime \prime }+\left (a +b \,{\mathrm e}^{2 \lambda x}\right ) y^{\prime }+\lambda \left (a -\lambda -b \,{\mathrm e}^{2 \lambda x}\right ) y = 0 \]

11120

\[ {}y^{\prime \prime }+\left (a +b \,{\mathrm e}^{\lambda x}+b -3 \lambda \right ) y^{\prime }+a^{2} \lambda \left (b -\lambda \right ) {\mathrm e}^{2 \lambda x} y = 0 \]

11121

\[ {}y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+c \,{\mathrm e}^{\mu x}\right ) y = 0 \]

11122

\[ {}y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a +b \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a \left (b +\lambda \right ) {\mathrm e}^{\lambda x}+c \right ) y = 0 \]

11123

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +2 b -\lambda \right ) y^{\prime }+\left (c \,{\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+b^{2}-b \lambda \right ) y = 0 \]

11124

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{x}+b \right ) y^{\prime }+\left (c \left (-c +a \right ) {\mathrm e}^{2 x}+\left (a k +c b -2 c k +c \right ) {\mathrm e}^{x}+k \left (b -k \right )\right ) y = 0 \]

11125

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \right ) y^{\prime }+\left (\alpha \,{\mathrm e}^{2 \lambda x}+\beta \,{\mathrm e}^{\lambda x}+\gamma \right ) y = 0 \]

11126

\[ {}y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{2 \mu x}+c \,{\mathrm e}^{\mu x}+k \right ) y = 0 \]

11127

\[ {}y^{\prime \prime }+\left (2 \,{\mathrm e}^{\lambda x} a +b -\lambda \right ) y^{\prime }+\left (a^{2} {\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+c \,{\mathrm e}^{2 \mu x}+d \,{\mathrm e}^{\mu x}+k \right ) y = 0 \]

11128

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{\mu x}\right ) y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\mu x}+\lambda \right ) y = 0 \]

11129

\[ {}y^{\prime \prime }+{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{2 \mu x}+b \right ) y^{\prime }+\mu \left ({\mathrm e}^{\lambda x} \left (b -a \,{\mathrm e}^{2 \mu x}\right )-\mu \right ) y = 0 \]

11130

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left (a \lambda \,{\mathrm e}^{\lambda x}+b \mu \,{\mathrm e}^{\mu x}\right ) y = 0 \]

11131

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{\lambda x} a +b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime }+\left ({\mathrm e}^{x \left (\lambda +\mu \right )} a b +{\mathrm e}^{\lambda x} a c +b \mu \,{\mathrm e}^{\mu x}\right ) y = 0 \]

11132

\[ {}\frac {2 x y+1}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}} = 0 \]

11133

\[ {}\frac {y^{2}-2 x^{2}}{y^{2} x -x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0 \]

11134

\[ {}\frac {1}{\sqrt {y^{2}+x^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {y^{2}+x^{2}}}\right ) y^{\prime } = 0 \]

11135

\[ {}y+x +x y^{\prime } = 0 \]

11136

\[ {}6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime } = 0 \]

11137

\[ {}\sec \left (x \right ) \cos \left (y\right )^{2}-\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

11138

\[ {}\left (1+x \right ) y^{2}-x^{3} y^{\prime } = 0 \]

11139

\[ {}2 \left (1-y^{2}\right ) x y+\left (x^{2}+1\right ) \left (1+y^{2}\right ) y^{\prime } = 0 \]

11140

\[ {}\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

11141

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y-x y^{\prime } = 0 \]

11142

\[ {}2 x^{2} y+3 y^{3}-\left (x^{3}+2 y^{2} x \right ) y^{\prime } = 0 \]

11143

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

11144

\[ {}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0 \]

11145

\[ {}y^{3}+x^{3} y^{\prime } = 0 \]

11146

\[ {}x +y \cos \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

11147

\[ {}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0 \]

11148

\[ {}4 x -y+2+\left (x +y+3\right ) y^{\prime } = 0 \]

11149

\[ {}2 x +y-\left (4 x +2 y-1\right ) y^{\prime } = 0 \]

11150

\[ {}y+2 y^{2} x -x^{2} y^{3}+2 x^{2} y y^{\prime } = 0 \]

11151

\[ {}2 y+3 y^{2} x +\left (x +2 x^{2} y\right ) y^{\prime } = 0 \]

11152

\[ {}y+y^{2} x +\left (x -x^{2} y\right ) y^{\prime } = 0 \]

11153

\[ {}y^{\prime }+y \cot \left (x \right ) = \sec \left (x \right ) \]

11154

\[ {}x y^{\prime }+\left (1+x \right ) y = {\mathrm e}^{x} \]

11155

\[ {}y^{\prime }-\frac {2 y}{1+x} = \left (1+x \right )^{3} \]

11156

\[ {}\left (x^{3}+x \right ) y^{\prime }+4 x^{2} y = 2 \]

11157

\[ {}x^{2} y^{\prime }+\left (-2 x +1\right ) y = x^{2} \]

11158

\[ {}\left (-x^{2}+1\right ) y^{\prime }-2 \left (1+x \right ) y = y^{\frac {5}{2}} \]

11159

\[ {}y^{\prime } y+y^{2} x = x \]

11160

\[ {}\sin \left (y\right ) y^{\prime }+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

11161

\[ {}4 x y^{\prime }+3 y+{\mathrm e}^{x} x^{4} y^{5} = 0 \]

11162

\[ {}y^{\prime }-\frac {y+1}{1+x} = \sqrt {y+1} \]

11163

\[ {}x^{4} y \left (3 y+2 x y^{\prime }\right )+x^{2} \left (4 y+3 x y^{\prime }\right ) = 0 \]

11164

\[ {}y^{2} \left (3 y-6 x y^{\prime }\right )-x \left (y-2 x y^{\prime }\right ) = 0 \]

11165

\[ {}2 x^{3} y-y^{2}-\left (2 x^{4}+x y\right ) y^{\prime } = 0 \]

11166

\[ {}y^{2}-x y+x^{2} y^{\prime } = 0 \]

11167

\[ {}\frac {-y+x y^{\prime }}{\sqrt {x^{2}-y^{2}}} = x y^{\prime } \]

11168

\[ {}x +y-\left (-y+x \right ) y^{\prime } = 0 \]

11169

\[ {}x^{2}+y^{2}-2 x y y^{\prime } = 0 \]

11170

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

11171

\[ {}-y+x y^{\prime } = y^{2}+x^{2} \]

11172

\[ {}3 x^{2}+6 x y+3 y^{2}+\left (2 x^{2}+3 x y\right ) y^{\prime } = 0 \]

11173

\[ {}2 x +\left (x^{2}+y^{2}+2 y\right ) y^{\prime } = 0 \]

11174

\[ {}y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime } = 0 \]

11175

\[ {}x^{3} y-y^{4}+\left (x y^{3}-x^{4}\right ) y^{\prime } = 0 \]

11176

\[ {}y^{2}-x^{2}+2 m x y+\left (m y^{2}-m \,x^{2}-2 x y\right ) y^{\prime } = 0 \]

11177

\[ {}x y^{\prime }-y+2 x^{2} y-x^{3} = 0 \]

11178

\[ {}\left (x +y\right ) y^{\prime }-1 = 0 \]

11179

\[ {}x +y^{\prime } y+y-x y^{\prime } = 0 \]

11180

\[ {}x y^{\prime }-a y+b y^{2} = c \,x^{2 a} \]

11181

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

11182

\[ {}\sqrt {1-y^{2}}+\sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

11183

\[ {}y^{\prime }-x^{2} y = x^{5} \]

11184

\[ {}\left (y-x \right )^{2} y^{\prime } = 1 \]

11185

\[ {}x y^{\prime }+y+x^{4} y^{4} {\mathrm e}^{x} = 0 \]

11186

\[ {}\left (1-x \right ) y+\left (1-y\right ) x y^{\prime } = 0 \]

11187

\[ {}\left (y-x \right ) y^{\prime }+y = 0 \]

11188

\[ {}-y+x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

11189

\[ {}-y+x y^{\prime } = \sqrt {x^{2}-y^{2}} \]

11190

\[ {}x \sin \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

11191

\[ {}x -2 y+5+\left (2 x -y+4\right ) y^{\prime } = 0 \]

11192

\[ {}y^{\prime }+\frac {y}{\left (-x^{2}+1\right )^{\frac {3}{2}}} = \frac {x +\sqrt {-x^{2}+1}}{\left (-x^{2}+1\right )^{2}} \]

11193

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y = a x y^{2} \]

11194

\[ {}x y^{2} \left (3 y+x y^{\prime }\right )-2 y+x y^{\prime } = 0 \]

11195

\[ {}\left (x^{2}+1\right ) y^{\prime }+y = \arctan \left (x \right ) \]

11196

\[ {}5 x y-3 y^{3}+\left (3 x^{2}-7 y^{2} x \right ) y^{\prime } = 0 \]

11197

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

11198

\[ {}y^{2} x +y-x y^{\prime } = 0 \]

11199

\[ {}\left (1-x \right ) y-\left (y+1\right ) x y^{\prime } = 0 \]

11200

\[ {}3 x^{2} y+\left (x^{3}+x^{3} y^{2}\right ) y^{\prime } = 0 \]