2.39 Problems 3801 to 3900

Table 2.77: Main lookup table

#

ODE

Mathematica result

Maple result

3801

\[ {}x \left (x -2 y\right ) y^{\prime }+\left (-y+2 x \right ) y = 0 \]

3802

\[ {}x \left (1+x -2 y\right ) y^{\prime }+\left (1-2 x +y\right ) y = 0 \]

3803

\[ {}x \left (1-x -2 y\right ) y^{\prime }+\left (1+2 x +y\right ) y = 0 \]

3804

\[ {}2 x \left (2 x^{2}+y\right ) y^{\prime }+\left (12 x^{2}+y\right ) y = 0 \]

3805

\[ {}2 \left (1+x \right ) y y^{\prime }+2 x -3 x^{2}+y^{2} = 0 \]

3806

\[ {}x \left (2 x +3 y\right ) y^{\prime } = y^{2} \]

3807

\[ {}x \left (2 x +3 y\right ) y^{\prime }+3 \left (x +y\right )^{2} = 0 \]

3808

\[ {}\left (3+6 x y+x^{2}\right ) y^{\prime }+2 x +2 x y+3 y^{2} = 0 \]

3809

\[ {}3 x \left (2 y+x \right ) y^{\prime }+x^{3}+3 y \left (y+2 x \right ) = 0 \]

3810

\[ {}a x y y^{\prime } = y^{2}+x^{2} \]

3811

\[ {}a x y y^{\prime }+x^{2}-y^{2} = 0 \]

3812

\[ {}x \left (a +b y\right ) y^{\prime } = c y \]

3813

\[ {}x \left (x -a y\right ) y^{\prime } = y \left (y-a x \right ) \]

3814

\[ {}x \left (x^{n}+a y\right ) y^{\prime }+\left (b +c y\right ) y^{2} = 0 \]

3815

\[ {}\left (1-x^{2} y\right ) y^{\prime }+1-y^{2} x = 0 \]

3816

\[ {}\left (1-x^{2} y\right ) y^{\prime }-1+y^{2} x = 0 \]

3817

\[ {}x \left (1-x y\right ) y^{\prime }+\left (1+x y\right ) y = 0 \]

3818

\[ {}x \left (x y+2\right ) y^{\prime } = 3+2 x^{3}-2 y-y^{2} x \]

3819

\[ {}x \left (2-x y\right ) y^{\prime }+2 y-x y^{2} \left (1+x y\right ) = 0 \]

3820

\[ {}x \left (3-x y\right ) y^{\prime } = y \left (x y-1\right ) \]

3821

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (1-x \right ) y = 0 \]

3822

\[ {}x^{2} \left (1-y\right ) y^{\prime }+\left (1+x \right ) y^{2} = 0 \]

3823

\[ {}\left (x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

3824

\[ {}\left (-x^{2}+1\right ) y y^{\prime }+2 x^{2}+y^{2} x = 0 \]

3825

\[ {}2 x^{2} y y^{\prime } = x^{2} \left (1+2 x \right )-y^{2} \]

3826

\[ {}x \left (1-2 x y\right ) y^{\prime }+y \left (2 x y+1\right ) = 0 \]

3827

\[ {}x \left (2 x y+1\right ) y^{\prime }+\left (2+3 x y\right ) y = 0 \]

3828

\[ {}x \left (2 x y+1\right ) y^{\prime }+\left (1+2 x y-x^{2} y^{2}\right ) y = 0 \]

3829

\[ {}x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 y^{2} x +y^{3} \]

3830

\[ {}2 \left (1+x \right ) x y y^{\prime } = 1+y^{2} \]

3831

\[ {}3 x^{2} y y^{\prime }+1+2 y^{2} x = 0 \]

3832

\[ {}x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 x y+2 y^{2}\right ) y \]

3833

\[ {}\left (1-y x^{3}\right ) y^{\prime } = x^{2} y^{2} \]

3834

\[ {}2 x^{3} y y^{\prime }+a +3 x^{2} y^{2} = 0 \]

3835

\[ {}x \left (3-2 x^{2} y\right ) y^{\prime } = 4 x -3 y+3 x^{2} y^{2} \]

3836

\[ {}x \left (3+2 x^{2} y\right ) y^{\prime }+\left (4+3 x^{2} y\right ) y = 0 \]

3837

\[ {}8 x^{3} y y^{\prime }+3 x^{4}-6 x^{2} y^{2}-y^{4} = 0 \]

3838

\[ {}x y \left (b \,x^{2}+a \right ) y^{\prime } = A +B y^{2} \]

3839

\[ {}3 x^{4} y y^{\prime } = 1-2 x^{3} y^{2} \]

3840

\[ {}x^{7} y y^{\prime } = 2 x^{2}+2+5 y x^{3} \]

3841

\[ {}y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}} = 0 \]

3842

\[ {}\left (y+1\right ) y^{\prime } \sqrt {x^{2}+1} = y^{3} \]

3843

\[ {}\left (\operatorname {g0} \left (x \right )+y \operatorname {g1} \left (x \right )\right ) y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \]

3844

\[ {}y^{2} y^{\prime }+x \left (2-y\right ) = 0 \]

3845

\[ {}y^{2} y^{\prime } = x \left (1+y^{2}\right ) \]

3846

\[ {}\left (x +y^{2}\right ) y^{\prime }+y = b x +a \]

3847

\[ {}\left (x -y^{2}\right ) y^{\prime } = x^{2}-y \]

3848

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime }+x y = 0 \]

3849

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime } = x y \]

3850

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

3851

\[ {}\left (x^{2}-y^{2}\right ) y^{\prime }+x \left (2 y+x \right ) = 0 \]

3852

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (y+2 x \right ) = 0 \]

3853

\[ {}\left (1-x^{2}+y^{2}\right ) y^{\prime } = 1+x^{2}-y^{2} \]

3854

\[ {}\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+2 x y = 0 \]

3855

\[ {}\left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+b^{2}+x^{2}+2 x y = 0 \]

3856

\[ {}\left (x +x^{2}+y^{2}\right ) y^{\prime } = y \]

3857

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime } = 2 x y \]

3858

\[ {}\left (x^{4}+y^{2}\right ) y^{\prime } = 4 y x^{3} \]

3859

\[ {}y \left (y+1\right ) y^{\prime } = \left (1+x \right ) x \]

3860

\[ {}\left (x +2 y+y^{2}\right ) y^{\prime }+y \left (y+1\right )+\left (x +y\right )^{2} y^{2} = 0 \]

3861

\[ {}\left (x^{2}+2 y+y^{2}\right ) y^{\prime }+2 x = 0 \]

3862

\[ {}\left (x^{3}+2 y-y^{2}\right ) y^{\prime }+3 x^{2} y = 0 \]

3863

\[ {}\left (1+y+x y+y^{2}\right ) y^{\prime }+1+y = 0 \]

3864

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

3865

\[ {}\left (-y+x \right )^{2} y^{\prime } = a^{2} \]

3866

\[ {}\left (x^{2}+2 x y-y^{2}\right ) y^{\prime }+x^{2}-2 x y+y^{2} = 0 \]

3867

\[ {}\left (x +y\right )^{2} y^{\prime } = x^{2}-2 x y+5 y^{2} \]

3868

\[ {}\left (a +b +x +y\right )^{2} y^{\prime } = 2 \left (a +y\right )^{2} \]

3869

\[ {}\left (2 x^{2}+4 x y-y^{2}\right ) y^{\prime } = x^{2}-4 x y-2 y^{2} \]

3870

\[ {}\left (3 x +y\right )^{2} y^{\prime } = 4 \left (3 x +2 y\right ) y \]

3871

\[ {}\left (1-3 x -y\right )^{2} y^{\prime } = \left (1-2 y\right ) \left (3-6 x -4 y\right ) \]

3872

\[ {}\left (\cot \left (x \right )-2 y^{2}\right ) y^{\prime } = y^{3} \csc \left (x \right ) \sec \left (x \right ) \]

3873

\[ {}3 y^{2} y^{\prime } = 1+x +a y^{3} \]

3874

\[ {}\left (x^{2}-3 y^{2}\right ) y^{\prime }+1+2 x y = 0 \]

3875

\[ {}\left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right ) = 0 \]

3876

\[ {}3 \left (x^{2}-y^{2}\right ) y^{\prime }+3 \,{\mathrm e}^{x}+6 x y \left (1+x \right )-2 y^{3} = 0 \]

3877

\[ {}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0 \]

3878

\[ {}\left (1-3 x +2 y\right )^{2} y^{\prime } = \left (4+2 x -3 y\right )^{2} \]

3879

\[ {}\left (1-3 x^{2} y+6 y^{2}\right ) y^{\prime }+x^{2}-3 y^{2} x = 0 \]

3880

\[ {}\left (x -6 y\right )^{2} y^{\prime }+a +2 x y-6 y^{2} = 0 \]

3881

\[ {}\left (x^{2}+a y^{2}\right ) y^{\prime } = x y \]

3882

\[ {}\left (x^{2}+x y+a y^{2}\right ) y^{\prime } = x^{2} a +x y+y^{2} \]

3883

\[ {}\left (x^{2} a +2 x y-a y^{2}\right ) y^{\prime }+x^{2}-2 a x y-y^{2} = 0 \]

3884

\[ {}\left (x^{2} a +2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2} = 0 \]

3885

\[ {}x \left (1-y^{2}\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

3886

\[ {}x \left (3 x -y^{2}\right ) y^{\prime }+\left (5 x -2 y^{2}\right ) y = 0 \]

3887

\[ {}x \left (y^{2}+x^{2}\right ) y^{\prime } = \left (x^{2}+x^{4}+y^{2}\right ) y \]

3888

\[ {}x \left (1-x^{2}+y^{2}\right ) y^{\prime }+\left (1+x^{2}-y^{2}\right ) y = 0 \]

3889

\[ {}x \left (a -x^{2}-y^{2}\right ) y^{\prime }+\left (a +x^{2}+y^{2}\right ) y = 0 \]

3890

\[ {}x \left (2 x^{2}+y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

3891

\[ {}\left (x \left (a -x^{2}-y^{2}\right )+y\right ) y^{\prime }+x -\left (a -x^{2}-y^{2}\right ) y = 0 \]

3892

\[ {}x \left (a +y\right )^{2} y^{\prime } = b y^{2} \]

3893

\[ {}x \left (x^{2}-x y+y^{2}\right ) y^{\prime }+\left (x^{2}+x y+y^{2}\right ) y = 0 \]

3894

\[ {}x \left (x^{2}-x y-y^{2}\right ) y^{\prime } = \left (x^{2}+x y-y^{2}\right ) y \]

3895

\[ {}x \left (x^{2}+a x y+y^{2}\right ) y^{\prime } = \left (x^{2}+b x y+y^{2}\right ) y \]

3896

\[ {}x \left (x^{2}-2 y^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y \]

3897

\[ {}x \left (x^{2}+2 y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y \]

3898

\[ {}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime } = x^{2} y-y^{3} \]

3899

\[ {}x \left (x^{2}+a x y+2 y^{2}\right ) y^{\prime } = \left (a x +2 y\right ) y^{2} \]

3900

\[ {}3 x y^{2} y^{\prime } = 2 x -y^{3} \]