6.171 Problems 17001 to 17100

Table 6.341: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

17001

\[ {} y^{\prime \prime }+y^{\prime }+y+1 = \sin \left (x \right )+x +x^{2} \]

17002

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \]

17003

\[ {} y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

17004

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 2 x +{\mathrm e}^{x} \]

17005

\[ {} y^{\prime \prime }+y = 2 \sin \left (x \right ) \sin \left (2 x \right ) \]

17006

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]

17007

\[ {} y^{\prime \prime \prime }-4 y^{\prime } = {\mathrm e}^{2 x} x +\sin \left (x \right )+x^{2} \]

17008

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}-1 \]

17009

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \]

17010

\[ {} y^{\prime \prime }+y = -2 x +2 \]

17011

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 9 x^{2}-12 x +2 \]

17012

\[ {} y^{\prime \prime }+9 y = 36 \,{\mathrm e}^{3 x} \]

17013

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]

17014

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = \left (12 x -7\right ) {\mathrm e}^{-x} \]

17015

\[ {} y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

17016

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 10 \sin \left (x \right ) \]

17017

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

17018

\[ {} y^{\prime \prime }+4 y = \sin \left (x \right ) \]

17019

\[ {} y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

17020

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 2 x^{2} {\mathrm e}^{x} \]

17021

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 16 \,{\mathrm e}^{-x}+9 x -6 \]

17022

\[ {} y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\cos \left (x \right )+\sin \left (x \right )\right ) \]

17023

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \cos \left (x \right ) \]

17024

\[ {} y^{\prime \prime \prime }-y^{\prime } = -2 x \]

17025

\[ {} y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

17026

\[ {} y^{\prime \prime \prime }-y = 2 x \]

17027

\[ {} y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

17028

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) \]

17029

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 4 \cos \left (2 x \right )+\sin \left (2 x \right ) \]

17030

\[ {} y^{\prime \prime }-y = 1 \]

17031

\[ {} y^{\prime \prime }-y = -2 \cos \left (x \right ) \]

17032

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

17033

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]

17034

\[ {} y^{\prime \prime }-y^{\prime }-5 y = 1 \]

17035

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \]

17036

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \]

17037

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \]

17038

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

17039

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

17040

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+6 y = 0 \]

17041

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

17042

\[ {} \left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0 \]

17043

\[ {} \left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

17044

\[ {} x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

17045

\[ {} x^{2} y^{\prime \prime \prime } = 2 y^{\prime } \]

17046

\[ {} \left (1+x \right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

17047

\[ {} \left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

17048

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = x \left (6-\ln \left (x \right )\right ) \]

17049

\[ {} x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

17050

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-3 y = -\frac {16 \ln \left (x \right )}{x} \]

17051

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = x^{2}-2 x +2 \]

17052

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

17053

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 \ln \left (x \right )^{2}+12 x \]

17054

\[ {} \left (1+x \right )^{3} y^{\prime \prime }+3 \left (1+x \right )^{2} y^{\prime }+\left (1+x \right ) y = 6 \ln \left (1+x \right ) \]

17055

\[ {} \left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

17056

\[ {} \left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

17057

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

17058

\[ {} \left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (1+x \right ) y^{\prime }+6 y = 6 \]

17059

\[ {} x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

17060

\[ {} y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0 \]

17061

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

17062

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = 1 \]

17063

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 5 x^{4} \]

17064

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = \left (x -1\right )^{2} {\mathrm e}^{x} \]

17065

\[ {} y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-2 x} y = {\mathrm e}^{-3 x} \]

17066

\[ {} \left (x^{4}-x^{3}\right ) y^{\prime \prime }+\left (2 x^{3}-2 x^{2}-x \right ) y^{\prime }-y = \frac {\left (x -1\right )^{2}}{x} \]

17067

\[ {} y^{\prime \prime }-y^{\prime }+{\mathrm e}^{2 x} y = {\mathrm e}^{2 x} x -1 \]

17068

\[ {} x \left (x -1\right ) y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+2 y = x^{2} \left (2 x -3\right ) \]

17069

\[ {} y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )} \]

17070

\[ {} y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

17071

\[ {} y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}} \]

17072

\[ {} y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \]

17073

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1} \]

17074

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \]

17075

\[ {} y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}} \]

17076

\[ {} y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

17077

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}} \]

17078

\[ {} x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

17079

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

17080

\[ {} x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2} \]

17081

\[ {} x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

17082

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

17083

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }+y = 1 \]

17084

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {6+x}{x^{2}} \]

17085

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = \frac {1}{x^{2}+1} \]

17086

\[ {} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (x -1\right )^{2} {\mathrm e}^{x} \]

17087

\[ {} 2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \]

17088

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x} \]

17089

\[ {} x^{3} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x^{2} y^{\prime }+x y = 2 \ln \left (x \right ) \]

17090

\[ {} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = 2 x -2 \]

17091

\[ {} x^{\prime \prime }+x^{\prime }+x = 0 \]

17092

\[ {} x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

17093

\[ {} x^{\prime \prime }+2 x^{\prime }+x = 0 \]

17094

\[ {} x^{\prime \prime }+{x^{\prime }}^{2}+x = 0 \]

17095

\[ {} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

17096

\[ {} x^{\prime \prime }-x \,{\mathrm e}^{x^{\prime }} = 0 \]

17097

\[ {} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

17098

\[ {} x^{\prime \prime }+x {x^{\prime }}^{2} = 0 \]

17099

\[ {} x^{\prime \prime }+\left (x+2\right ) x^{\prime } = 0 \]

17100

\[ {} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]