6.174 Problems 17301 to 17400

Table 6.347: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

17301

\[ {}y^{\prime } = \frac {x^{2} \left (x^{3}+1\right )}{y} \]

17302

\[ {}y^{\prime }+y^{3} \sin \left (x \right ) = 0 \]

17303

\[ {}y^{\prime } = \frac {7 x^{2}-1}{7+5 y} \]

17304

\[ {}y^{\prime } = \sin \left (2 x \right )^{2} \cos \left (y\right )^{2} \]

17305

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

17306

\[ {}y y^{\prime } = \left (x y^{2}+x \right ) {\mathrm e}^{x^{2}} \]

17307

\[ {}y^{\prime } = \frac {x^{2}+{\mathrm e}^{-x}}{y^{2}-{\mathrm e}^{y}} \]

17308

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

17309

\[ {}y^{\prime } = \frac {\sec \left (x \right )^{2}}{y^{3}+1} \]

17310

\[ {}y^{\prime } = 4 \sqrt {x y} \]

17311

\[ {}y^{\prime } = x \left (y-y^{2}\right ) \]

17312

\[ {}y^{\prime } = \left (1-12 x \right ) y^{2} \]

17313

\[ {}y^{\prime } = \frac {3-2 x}{y} \]

17314

\[ {}x +y \,{\mathrm e}^{-x} y^{\prime } = 0 \]

17315

\[ {}r^{\prime } = \frac {r^{2}}{\theta } \]

17316

\[ {}y^{\prime } = \frac {3 x}{y+x^{2} y} \]

17317

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]

17318

\[ {}y^{\prime } = 2 x y^{2}+4 y^{2} x^{3} \]

17319

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-3 y} \]

17320

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (2 x \right ) \]

17321

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right ) y^{5}}{6} \]

17322

\[ {}y^{\prime } = \frac {3 x^{2}-{\mathrm e}^{x}}{2 y-11} \]

17323

\[ {}x^{2} y^{\prime } = y-x y \]

17324

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]

17325

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-4}} \]

17326

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]

17327

\[ {}y^{2} \sqrt {-x^{2}+1}\, y^{\prime } = \arcsin \left (x \right ) \]

17328

\[ {}y^{\prime } = \frac {3 x^{2}+1}{12 y^{2}-12 y} \]

17329

\[ {}y^{\prime } = \frac {2 x^{2}}{2 y^{2}-6} \]

17330

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]

17331

\[ {}y^{\prime } = \frac {6-{\mathrm e}^{x}}{3+2 y} \]

17332

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{10+2 y} \]

17333

\[ {}y^{\prime } = 2 \left (1+x \right ) \left (1+y^{2}\right ) \]

17334

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{3} \]

17335

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{t +1} \]

17336

\[ {}y^{\prime } = \frac {a y+b}{c y+d} \]

17337

\[ {}y^{\prime }+4 y = t +{\mathrm e}^{-2 t} \]

17338

\[ {}y^{\prime }-2 y = t^{2} {\mathrm e}^{2 t} \]

17339

\[ {}y^{\prime }+y = t \,{\mathrm e}^{-t}+1 \]

17340

\[ {}y^{\prime }+\frac {y}{t} = 5+\cos \left (2 t \right ) \]

17341

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{t} \]

17342

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

17343

\[ {}y^{\prime }+2 t y = 16 t \,{\mathrm e}^{-t^{2}} \]

17344

\[ {}\left (t^{2}+1\right ) y^{\prime }+4 t y = \frac {1}{\left (t^{2}+1\right )^{2}} \]

17345

\[ {}2 y^{\prime }+y = 3 t \]

17346

\[ {}t y^{\prime }-y = t^{3} {\mathrm e}^{-t} \]

17347

\[ {}y^{\prime }+y = 5 \sin \left (2 t \right ) \]

17348

\[ {}2 y^{\prime }+y = 3 t^{2} \]

17349

\[ {}y^{\prime }-y = 2 t \,{\mathrm e}^{2 t} \]

17350

\[ {}y^{\prime }+2 y = t \,{\mathrm e}^{-2 t} \]

17351

\[ {}t y^{\prime }+4 y = t^{2}-t +1 \]

17352

\[ {}y^{\prime }+\frac {2 y}{t} = \frac {\cos \left (t \right )}{t^{2}} \]

17353

\[ {}y^{\prime }-2 y = {\mathrm e}^{2 t} \]

17354

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

17355

\[ {}t^{3} y^{\prime }+4 t^{2} y = {\mathrm e}^{-t} \]

17356

\[ {}t y^{\prime }+\left (t +1\right ) y = t \]

17357

\[ {}y^{\prime }-\frac {y}{3} = 3 \cos \left (t \right ) \]

17358

\[ {}2 y^{\prime }-y = {\mathrm e}^{\frac {t}{3}} \]

17359

\[ {}3 y^{\prime }-2 y = {\mathrm e}^{-\frac {\pi t}{2}} \]

17360

\[ {}t y^{\prime }+\left (t +1\right ) y = 2 t \,{\mathrm e}^{-t} \]

17361

\[ {}t y^{\prime }+2 y = \frac {\sin \left (t \right )}{t} \]

17362

\[ {}\sin \left (t \right ) y^{\prime }+\cos \left (t \right ) y = {\mathrm e}^{t} \]

17363

\[ {}y^{\prime }+\frac {y}{2} = 2 \cos \left (t \right ) \]

17364

\[ {}y^{\prime }+\frac {4 y}{3} = 1-\frac {t}{4} \]

17365

\[ {}y^{\prime }+\frac {y}{4} = 3+2 \cos \left (2 t \right ) \]

17366

\[ {}y^{\prime }-y = 1+3 \sin \left (t \right ) \]

17367

\[ {}y^{\prime }-\frac {3 y}{2} = 3 t +3 \,{\mathrm e}^{t} \]

17368

\[ {}y^{\prime }-6 y = t^{6} {\mathrm e}^{6 t} \]

17369

\[ {}y^{\prime }+\frac {y}{t} = 3 \cos \left (2 t \right ) \]

17370

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

17371

\[ {}2 y^{\prime }+y = 3 t^{2} \]

17372

\[ {}\left (t -3\right ) y^{\prime }+\ln \left (t \right ) y = 2 t \]

17373

\[ {}t \left (t -4\right ) y^{\prime }+y = 0 \]

17374

\[ {}y^{\prime }+\tan \left (t \right ) y = \sin \left (t \right ) \]

17375

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]

17376

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]

17377

\[ {}\ln \left (t \right ) y^{\prime }+y = \cot \left (t \right ) \]

17378

\[ {}y^{\prime } = \frac {t -y}{2 t +5 y} \]

17379

\[ {}y^{\prime } = \sqrt {1-t^{2}-y^{2}} \]

17380

\[ {}y^{\prime } = \frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \]

17381

\[ {}y^{\prime } = \left (t^{2}+y^{2}\right )^{{3}/{2}} \]

17382

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

17383

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

17384

\[ {}y^{\prime } = y^{{1}/{3}} \]

17385

\[ {}y^{\prime } = -\frac {t}{2}+\frac {\sqrt {t^{2}+4 y}}{2} \]

17386

\[ {}y^{\prime } = -\frac {4 t}{y} \]

17387

\[ {}y^{\prime } = 2 t y^{2} \]

17388

\[ {}y^{\prime }+y^{3} = 0 \]

17389

\[ {}y^{\prime } = \frac {t^{2}}{y \left (t^{3}+1\right )} \]

17390

\[ {}y^{\prime } = t y \left (3-y\right ) \]

17391

\[ {}y^{\prime } = y \left (3-t y\right ) \]

17392

\[ {}y^{\prime } = -y \left (3-t y\right ) \]

17393

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \]

17394

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 1 & 1<t \end {array}\right .\right ) y = 0 \]

17395

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

17396

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

17397

\[ {}3 x^{2}-2 x y+2+\left (6 y^{2}-x^{2}+3\right ) y^{\prime } = 0 \]

17398

\[ {}2 x y^{2}+2 y+\left (2 x^{2} y+2 x \right ) y^{\prime } = 0 \]

17399

\[ {}y^{\prime } = -\frac {2 y+4 x}{2 x +3 y} \]

17400

\[ {}y^{\prime } = -\frac {4 x -2 y}{2 x -3 y} \]