6.172 Problems 17101 to 17200

Table 6.343: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

17101

\[ {} y^{\prime \prime }+\lambda y = 0 \]

17102

\[ {} y^{\prime \prime }+\lambda y = 0 \]

17103

\[ {} y^{\prime \prime }-y = 0 \]

17104

\[ {} y^{\prime \prime }+y = 0 \]

17105

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

17106

\[ {} y^{\prime \prime }+y = 0 \]

17107

\[ {} y^{\prime \prime }-y = 0 \]

17108

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

17109

\[ {} y^{\prime \prime }+\alpha y^{\prime } = 0 \]

17110

\[ {} y^{\prime \prime }+\alpha ^{2} y = 1 \]

17111

\[ {} y^{\prime \prime }+y = 1 \]

17112

\[ {} y^{\prime \prime }+\lambda ^{2} y = 0 \]

17113

\[ {} y^{\prime \prime }+\lambda ^{2} y = 0 \]

17114

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

17115

\[ {} y^{\prime \prime \prime \prime }-\lambda ^{4} y = 0 \]

17116

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

17117

\[ {} x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime } = 0 \]

17118

\[ {} x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime } = 0 \]

17119

\[ {} y^{\prime } = 1-x y \]

17120

\[ {} y^{\prime } = \frac {y-x}{x +y} \]

17121

\[ {} y^{\prime } = y \sin \left (x \right ) \]

17122

\[ {} y^{\prime \prime }+x y = 0 \]

17123

\[ {} y^{\prime \prime }-\sin \left (x \right ) y^{\prime } = 0 \]

17124

\[ {} x y^{\prime \prime }+y \sin \left (x \right ) = x \]

17125

\[ {} \ln \left (x \right ) y^{\prime \prime }-y \sin \left (x \right ) = 0 \]

17126

\[ {} y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]

17127

\[ {} y^{\prime }-2 x y = 0 \]

17128

\[ {} y^{\prime \prime }+x y^{\prime }+y = 0 \]

17129

\[ {} y^{\prime \prime }-x y^{\prime }+y = 1 \]

17130

\[ {} y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

17131

\[ {} y^{\prime \prime } = x^{2} y-y^{\prime } \]

17132

\[ {} y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

17133

\[ {} y^{\prime } = {\mathrm e}^{y}+x y \]

17134

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

17135

\[ {} \left (1+x \right ) y^{\prime }-n y = 0 \]

17136

\[ {} 9 x \left (1-x \right ) y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

17137

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x^{2}-\frac {1}{9}\right ) y = 0 \]

17138

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

17139

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+\frac {y}{9} = 0 \]

17140

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+4 y = 0 \]

17141

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+4 \left (x^{4}-1\right ) y = 0 \]

17142

\[ {} x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

17143

\[ {} y^{\prime \prime }+\frac {5 y^{\prime }}{x}+y = 0 \]

17144

\[ {} y^{\prime \prime }+\frac {3 y^{\prime }}{x}+4 y = 0 \]

17145

\[ {} y^{\prime \prime }+4 y = \cos \left (x \right )^{2} \]

17146

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2} \]

17147

\[ {} y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \]

17148

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right ) \]

17149

\[ {} y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \]

17150

\[ {} \left [x_{1}^{\prime }\left (t \right ) = -2 t x_{1} \left (t \right )^{2}, x_{2}^{\prime }\left (t \right ) = \frac {x_{2} \left (t \right )+t}{t}\right ] \]

17151

\[ {} [x_{1}^{\prime }\left (t \right ) = {\mathrm e}^{t -x_{1} \left (t \right )}, x_{2}^{\prime }\left (t \right ) = 2 \,{\mathrm e}^{x_{1} \left (t \right )}] \]

17152

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )^{2}}{x \left (t \right )}\right ] \]

17153

\[ {} \left [x_{1}^{\prime }\left (t \right ) = \frac {x_{1} \left (t \right )^{2}}{x_{2} \left (t \right )}, x_{2}^{\prime }\left (t \right ) = x_{2} \left (t \right )-x_{1} \left (t \right )\right ] \]

17154

\[ {} \left [x^{\prime }\left (t \right ) = \frac {{\mathrm e}^{-x \left (t \right )}}{t}, y^{\prime }\left (t \right ) = \frac {x \left (t \right ) {\mathrm e}^{-y \left (t \right )}}{t}\right ] \]

17155

\[ {} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{x \left (t \right )+y \left (t \right )}\right ] \]

17156

\[ {} \left [x^{\prime }\left (t \right ) = \frac {t -y \left (t \right )}{y \left (t \right )-x \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{y \left (t \right )-x \left (t \right )}\right ] \]

17157

\[ {} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {t +x \left (t \right )}{x \left (t \right )+y \left (t \right )}\right ] \]

17158

\[ {} [x^{\prime }\left (t \right ) = -9 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

17159

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+t, y^{\prime }\left (t \right ) = x \left (t \right )-t] \]

17160

\[ {} [x^{\prime }\left (t \right )+3 x \left (t \right )+4 y \left (t \right ) = 0, y^{\prime }\left (t \right )+2 x \left (t \right )+5 y \left (t \right ) = 0] \]

17161

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+5 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )] \]

17162

\[ {} [4 x^{\prime }\left (t \right )-y^{\prime }\left (t \right )+3 x \left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )+y \left (t \right ) = \cos \left (t \right )] \]

17163

\[ {} [x^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+z \left (t \right )] \]

17164

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

17165

\[ {} [x^{\prime \prime }\left (t \right ) = y \left (t \right ), y^{\prime \prime }\left (t \right ) = x \left (t \right )] \]

17166

\[ {} [x^{\prime \prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right ) = 0, x^{\prime }\left (t \right )+y^{\prime \prime }\left (t \right ) = 0] \]

17167

\[ {} [x^{\prime \prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )] \]

17168

\[ {} [x^{\prime \prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ) x^{\prime }\left (t \right )+x \left (t \right )] \]

17169

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )] \]

17170

\[ {} \left [x^{\prime }\left (t \right ) = -\frac {1}{y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {1}{x \left (t \right )}\right ] \]

17171

\[ {} \left [x^{\prime }\left (t \right ) = \frac {x \left (t \right )}{y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {y \left (t \right )}{x \left (t \right )}\right ] \]

17172

\[ {} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )}{x \left (t \right )-y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{x \left (t \right )-y \left (t \right )}\right ] \]

17173

\[ {} [x^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right ) \cos \left (y \left (t \right )\right ), y^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right ) \sin \left (y \left (t \right )\right )] \]

17174

\[ {} \left [{\mathrm e}^{t} x^{\prime }\left (t \right ) = \frac {1}{y \left (t \right )}, {\mathrm e}^{t} y^{\prime }\left (t \right ) = \frac {1}{x \left (t \right )}\right ] \]

17175

\[ {} \left [x^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}+\sin \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}, y^{\prime }\left (t \right ) = -\frac {\sin \left (2 x \left (t \right )\right ) \sin \left (2 y \left (t \right )\right )}{2}\right ] \]

17176

\[ {} [x^{\prime }\left (t \right ) = 8 y \left (t \right )-x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

17177

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )] \]

17178

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

17179

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 y \left (t \right )-2 x \left (t \right )] \]

17180

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

17181

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right )] \]

17182

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )] \]

17183

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = y \left (t \right )-2 z \left (t \right )-3 x \left (t \right )] \]

17184

\[ {} [x^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = -{\mathrm e}^{2 t}, y^{\prime }\left (t \right )+3 x \left (t \right )-2 y \left (t \right ) = 6 \,{\mathrm e}^{2 t}] \]

17185

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-\cos \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )-2 x \left (t \right )+\cos \left (t \right )+\sin \left (t \right )] \]

17186

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+\tan \left (t \right )^{2}-1, y^{\prime }\left (t \right ) = \tan \left (t \right )-x \left (t \right )] \]

17187

\[ {} \left [x^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right )+\frac {2}{{\mathrm e}^{t}-1}, y^{\prime }\left (t \right ) = 6 x \left (t \right )+3 y \left (t \right )-\frac {3}{{\mathrm e}^{t}-1}\right ] \]

17188

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\frac {1}{\cos \left (t \right )}\right ] \]

17189

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = 1-x \left (t \right )] \]

17190

\[ {} [x^{\prime }\left (t \right ) = 3-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 t] \]

17191

\[ {} [x^{\prime }\left (t \right ) = -y \left (t \right )+\sin \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+\cos \left (t \right )] \]

17192

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-{\mathrm e}^{t}] \]

17193

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right )+4 t -1, y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )+t] \]

17194

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+{\mathrm e}^{t}] \]

17195

\[ {} [x^{\prime }\left (t \right )+y \left (t \right ) = t^{2}, y^{\prime }\left (t \right )-x \left (t \right ) = t] \]

17196

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = {\mathrm e}^{-t}, 2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 y \left (t \right ) = \sin \left (t \right )] \]

17197

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-2 z \left (t \right )+2-t, y^{\prime }\left (t \right ) = 1-x \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right )+1-t] \]

17198

\[ {} [x^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right ) = 2 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right )+y \left (t \right )+z \left (t \right ) = 1, z^{\prime }\left (t \right )+z \left (t \right ) = 1] \]

17199

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )] \]

17200

\[ {} [x^{\prime }\left (t \right ) = 6 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+3 y \left (t \right )] \]