6.175 Problems 17401 to 17500

Table 6.349: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

17401

\[ {}{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left ({\mathrm e}^{x} \cos \left (y\right )+2 \cos \left (x \right )\right ) y^{\prime } = 0 \]

17402

\[ {}{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

17403

\[ {}y \,{\mathrm e}^{x y} \cos \left (2 x \right )-2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+2 x +\left (x \,{\mathrm e}^{x y} \cos \left (2 x \right )-3\right ) y^{\prime } = 0 \]

17404

\[ {}\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

17405

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

17406

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

17407

\[ {}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0 \]

17408

\[ {}9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime } = 0 \]

17409

\[ {}x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

17410

\[ {}\frac {\sin \left (y\right )}{y}-2 \sin \left (x \right ) {\mathrm e}^{-x}+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y} = 0 \]

17411

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

17412

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

17413

\[ {}3 x^{2} y+2 x y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

17414

\[ {}y^{\prime } = {\mathrm e}^{2 x}+y-1 \]

17415

\[ {}\frac {y^{\prime }}{\frac {x}{y}-\sin \left (y\right )} = 0 \]

17416

\[ {}y+\left (2 x y-{\mathrm e}^{-2 y}\right ) y^{\prime } = 0 \]

17417

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

17418

\[ {}\frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

17419

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

17420

\[ {}3 x y+y^{2}+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

17421

\[ {}y y^{\prime } = 1+x \]

17422

\[ {}\left (y^{4}+1\right ) y^{\prime } = x^{4}+1 \]

17423

\[ {}\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{3 x^{2} y+y^{3}} = 1 \]

17424

\[ {}x \left (x -1\right ) y^{\prime } = y \left (1+y\right ) \]

17425

\[ {}\sqrt {x^{2}-y^{2}}+y = x y^{\prime } \]

17426

\[ {}x y y^{\prime } = \left (x +y\right )^{2} \]

17427

\[ {}y^{\prime } = \frac {4 y-7 x}{5 x -y} \]

17428

\[ {}x y^{\prime }-4 \sqrt {y^{2}-x^{2}} = y \]

17429

\[ {}y^{\prime } = \frac {y^{4}+2 x y^{3}-3 x^{2} y^{2}-2 x^{3} y}{2 x^{2} y^{2}-2 x^{3} y-2 x^{4}} \]

17430

\[ {}\left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}} \]

17431

\[ {}x y y^{\prime } = x^{2}+y^{2} \]

17432

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

17433

\[ {}t y^{\prime }+y = t^{2} y^{2} \]

17434

\[ {}y^{\prime } = y \left (t y^{3}-1\right ) \]

17435

\[ {}y^{\prime }+\frac {3 y}{t} = t^{2} y^{2} \]

17436

\[ {}t^{2} y^{\prime }+2 t y-y^{3} = 0 \]

17437

\[ {}5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right ) \]

17438

\[ {}3 t y^{\prime }+9 y = 2 t y^{{5}/{3}} \]

17439

\[ {}y^{\prime } = y+\sqrt {y} \]

17440

\[ {}y^{\prime } = r y-k^{2} y^{2} \]

17441

\[ {}y^{\prime } = a y+b y^{3} \]

17442

\[ {}y^{\prime }+3 t y = 4-4 t^{2}+y^{2} \]

17443

\[ {}\left (3 x-y \right ) x^{\prime }+9 y -2 x = 0 \]

17444

\[ {}1 = \left (3 \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

17445

\[ {}y^{\prime }-4 \,{\mathrm e}^{x} y^{2} = y \]

17446

\[ {}x y^{\prime }+\left (1+x \right ) y = x \]

17447

\[ {}y^{\prime } = \frac {x y^{2}-\frac {\sin \left (2 x \right )}{2}}{\left (-x^{2}+1\right ) y} \]

17448

\[ {}\frac {\sqrt {x}\, y^{\prime }}{y} = 1 \]

17449

\[ {}5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0 \]

17450

\[ {}2 x y y^{\prime }+\ln \left (x \right ) = -y^{2}-1 \]

17451

\[ {}\left (2-x \right ) y^{\prime } = y+2 \left (2-x \right )^{5} \]

17452

\[ {}x y^{\prime } = -\frac {1}{\ln \left (x \right )} \]

17453

\[ {}x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y} \]

17454

\[ {}4 x y y^{\prime } = 8 x^{2}+5 y^{2} \]

17455

\[ {}y^{\prime }+y-y^{{1}/{4}} = 0 \]

17456

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+4] \]

17457

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+\sin \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )-\cos \left (t \right )] \]

17458

\[ {}[x^{\prime }\left (t \right ) = -2 t x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

17459

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-3] \]

17460

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )] \]

17461

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+t y \left (t \right ), y^{\prime }\left (t \right ) = t x \left (t \right )-y \left (t \right )] \]

17462

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+\sin \left (t \right ) y \left (t \right )] \]

17463

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

17464

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

17465

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

17466

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 \sin \left (t \right )] \]

17467

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )+2 t, y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )-3] \]

17468

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+1, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-3] \]

17469

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right )-4, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-6] \]

17470

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{4}-\frac {3 y \left (t \right )}{4}+8, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}+y \left (t \right )-\frac {23}{2}\right ] \]

17471

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-11, y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )-35] \]

17472

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-3, y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+1] \]

17473

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )-35, y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-11] \]

17474

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )] \]

17475

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

17476

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

17477

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )] \]

17478

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \]

17479

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

17480

\[ {}\left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {3 x \left (t \right )}{4}+\frac {5 y \left (t \right )}{4}\right ] \]

17481

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{4}-\frac {7 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{4}+\frac {5 y \left (t \right )}{4}\right ] \]

17482

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{4}-\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}+y \left (t \right )\right ] \]

17483

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

17484

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )] \]

17485

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

17486

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

17487

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

17488

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

17489

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )] \]

17490

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

17491

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

17492

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

17493

\[ {}\left [x^{\prime }\left (t \right ) = 2 x \left (t \right )-\frac {5 y \left (t \right )}{2}, y^{\prime }\left (t \right ) = \frac {9 x \left (t \right )}{5}-y \left (t \right )\right ] \]

17494

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-3 y \left (t \right )] \]

17495

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )-y \left (t \right )] \]

17496

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

17497

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

17498

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

17499

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )] \]

17500

\[ {}\left [x^{\prime }\left (t \right ) = \frac {3 x \left (t \right )}{4}-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-\frac {5 y \left (t \right )}{4}\right ] \]