6.33 Problems 3201 to 3300

Table 6.65: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

3201

\[ {}y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (x \right ) \]

3202

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-2 x} \cos \left (2 x \right ) \]

3203

\[ {}y^{\prime \prime \prime }+2 y^{\prime } = x^{2} \sin \left (x \right ) \]

3204

\[ {}y^{\prime \prime \prime \prime }-y = x^{2} \cos \left (x \right ) \]

3205

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

3206

\[ {}y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

3207

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

3208

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right ) \]

3209

\[ {}y^{\left (5\right )}+y^{\prime \prime \prime \prime } = x^{2} \]

3210

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = {\mathrm e}^{x} x^{2} \]

3211

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sin \left (x \right ) \]

3212

\[ {}y^{\prime \prime \prime }-y^{\prime } = x \sin \left (x \right ) \]

3213

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = x \cos \left (2 x \right ) \]

3214

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2} \cos \left (x \right ) \]

3215

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right ) \]

3216

\[ {}y^{\prime \prime }-y = \sin \left (2 x \right ) x \]

3217

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

3218

\[ {}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

3219

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

3220

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

3221

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+y = 0 \]

3222

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+16 y = 0 \]

3223

\[ {}4 x^{2} y^{\prime \prime }-16 x y^{\prime }+25 y = 0 \]

3224

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+10 y = 0 \]

3225

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }-18 y = \ln \left (x \right ) \]

3226

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = \ln \left (x^{2}\right ) \]

3227

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{3} \]

3228

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 1-x \]

3229

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x} \]

3230

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

3231

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = \ln \left (x \right ) x^{2} \]

3232

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+3 y = \left (x -1\right ) \ln \left (x \right ) \]

3233

\[ {}4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right ) \]

3234

\[ {}3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 x y^{\prime }+10 y = \frac {4}{x^{2}} \]

3235

\[ {}x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 x y^{\prime }-6 y = \cos \left (\ln \left (x \right )\right ) \]

3236

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right ) \]

3237

\[ {}[x^{\prime }\left (t \right )-x \left (t \right ) = \cos \left (t \right ), y^{\prime }\left (t \right )+y \left (t \right ) = 4 t] \]

3238

\[ {}[x^{\prime }\left (t \right )+5 x \left (t \right ) = 3 t^{2}, y^{\prime }\left (t \right )+y \left (t \right ) = {\mathrm e}^{3 t}] \]

3239

\[ {}[x^{\prime }\left (t \right )+2 x \left (t \right ) = 3 t, x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )+y \left (t \right ) = \cos \left (2 t \right )] \]

3240

\[ {}[x^{\prime }\left (t \right )-x \left (t \right )+y \left (t \right ) = 2 \sin \left (t \right ), x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 3 y \left (t \right )-3 x \left (t \right )] \]

3241

\[ {}[2 x^{\prime }\left (t \right )+3 x \left (t \right )-y \left (t \right ) = {\mathrm e}^{t}, 5 x \left (t \right )-3 y^{\prime }\left (t \right ) = y \left (t \right )+2 t] \]

3242

\[ {}[5 y^{\prime }\left (t \right )-3 x^{\prime }\left (t \right )-5 y \left (t \right ) = 5 t, 3 x^{\prime }\left (t \right )-5 y^{\prime }\left (t \right )-2 x \left (t \right ) = 0] \]

3243

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), z^{\prime }\left (t \right ) = 3 y \left (t \right )-2 z \left (t \right )] \]

3244

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

3245

\[ {}y^{\prime \prime } = k^{2} y \]

3246

\[ {}x^{\prime \prime }+k^{2} x = 0 \]

3247

\[ {}y^{3} y^{\prime \prime }+4 = 0 \]

3248

\[ {}x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

3249

\[ {}x y^{\prime \prime } = x^{2}+1 \]

3250

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

3251

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

3252

\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

3253

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

3254

\[ {}x^{\prime \prime }+t x^{\prime } = t^{3} \]

3255

\[ {}x^{2} y^{\prime \prime } = x y^{\prime }+1 \]

3256

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

3257

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 1 \]

3258

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

3259

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

3260

\[ {}y^{\prime \prime } = y y^{\prime } \]

3261

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

3262

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

3263

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

3264

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

3265

\[ {}y y^{\prime \prime }+1 = {y^{\prime }}^{2} \]

3266

\[ {}y^{\prime \prime } = y \]

3267

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

3268

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

3269

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

3270

\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

3271

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

3272

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]

3273

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

3274

\[ {}y^{\prime \prime } = y^{3} \]

3275

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

3276

\[ {}y y^{\prime \prime }-y^{\prime } y^{2} = {y^{\prime }}^{2} \]

3277

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

3278

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

3279

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

3280

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]

3281

\[ {}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]

3282

\[ {}x^{\prime \prime }-k^{2} x = 0 \]

3283

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]

3284

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]

3285

\[ {}4 y^{2} = x^{2} {y^{\prime }}^{2} \]

3286

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

3287

\[ {}1+\left (2 y-x^{2}\right ) {y^{\prime }}^{2}-2 y {y^{\prime }}^{2} x^{2} = 0 \]

3288

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \]

3289

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

3290

\[ {}x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y \]

3291

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

3292

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2} = x^{2} \]

3293

\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

3294

\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \]

3295

\[ {}y = y^{\prime } x \left (1+y^{\prime }\right ) \]

3296

\[ {}y = x +3 \ln \left (y^{\prime }\right ) \]

3297

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 \]

3298

\[ {}y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

3299

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

3300

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \]