6.29 Problems 2801 to 2900

Table 6.57: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

2801

\[ {} [x^{\prime }\left (t \right ) = -5 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

2802

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-7 y \left (t \right )] \]

2803

\[ {} [x^{\prime }\left (t \right ) = -7 x \left (t \right )+y \left (t \right )-6 z \left (t \right ), y^{\prime }\left (t \right ) = 10 x \left (t \right )-4 y \left (t \right )+12 z \left (t \right ), z^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+z \left (t \right )] \]

2804

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+4 z \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right )+3 z \left (t \right )] \]

2805

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right )] \]

2806

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+2 y \left (t \right )+3 z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-2 z \left (t \right )] \]

2807

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ), z^{\prime }\left (t \right ) = 2 h \left (t \right ), h^{\prime }\left (t \right ) = -2 z \left (t \right )] \]

2808

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+h \left (t \right ), z^{\prime }\left (t \right ) = 2 h \left (t \right ), h^{\prime }\left (t \right ) = -2 z \left (t \right )] \]

2809

\[ {} x^{\prime } = x \left (1-x\right ) \]

2810

\[ {} x^{\prime } = -x \left (1-x\right ) \]

2811

\[ {} x^{\prime } = x^{2} \]

2812

\[ {} \left [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -\frac {\left (x_{1} \left (t \right )^{2}+\sqrt {x_{1} \left (t \right )^{2}+4 x_{2} \left (t \right )^{2}}\right ) x_{1} \left (t \right )}{2}\right ] \]

2813

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-x_{2} \left (t \right )+1, x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )+5] \]

2814

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{3}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )-y \left (t \right )^{5}-y \left (t \right ) x \left (t \right )^{4}] \]

2815

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}+1, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right )^{2}] \]

2816

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}-1, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )] \]

2817

\[ {} [x^{\prime }\left (t \right ) = 6 x \left (t \right )-6 x \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 4 y \left (t \right )-4 y \left (t \right )^{2}-2 x \left (t \right ) y \left (t \right )] \]

2818

\[ {} [x^{\prime }\left (t \right ) = \tan \left (x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right )+x \left (t \right )^{3}] \]

2819

\[ {} [x^{\prime }\left (t \right ) = {\mathrm e}^{y \left (t \right )}-x \left (t \right ), y^{\prime }\left (t \right ) = {\mathrm e}^{x \left (t \right )}+y \left (t \right )] \]

2820

\[ {} z^{\prime \prime }+z^{3} = 0 \]

2821

\[ {} z^{\prime \prime }+z+z^{5} = 0 \]

2822

\[ {} z^{\prime \prime }+{\mathrm e}^{z^{2}} = 1 \]

2823

\[ {} z^{\prime \prime }+\frac {z}{1+z^{2}} = 0 \]

2824

\[ {} z^{\prime \prime }+z-2 z^{3} = 0 \]

2825

\[ {} [x_{1}^{\prime }\left (t \right ) = -5 x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-5 x_{2} \left (t \right )] \]

2826

\[ {} [x_{1}^{\prime }\left (t \right ) = -x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 8 x_{1} \left (t \right )-6 x_{2} \left (t \right )] \]

2827

\[ {} [x_{1}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+5 x_{2} \left (t \right )] \]

2828

\[ {} [x_{1}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-6 x_{2} \left (t \right )] \]

2829

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -8 x_{1} \left (t \right )+4 x_{2} \left (t \right )] \]

2830

\[ {} [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

2831

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )-x_{2} \left (t \right )] \]

2832

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )-3 x_{2} \left (t \right )] \]

2833

\[ {} [x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -5 x_{1} \left (t \right )-2 x_{2} \left (t \right )] \]

2834

\[ {} [x_{1}^{\prime }\left (t \right ) = 4 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -9 x_{1} \left (t \right )] \]

2835

\[ {} y^{\prime \prime }+\lambda y = 0 \]

2836

\[ {} y^{\prime \prime }+\lambda y = 0 \]

2837

\[ {} y^{\prime \prime }-\lambda y = 0 \]

2838

\[ {} y^{\prime \prime }+\lambda y = 0 \]

2839

\[ {} y^{\prime \prime }-2 y^{\prime }+\left (1+\lambda \right ) y = 0 \]

2840

\[ {} y^{\prime \prime }+\lambda y = 0 \]

2841

\[ {} x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

2842

\[ {} x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

2843

\[ {} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

2844

\[ {} y+x y^{\prime } = 0 \]

2845

\[ {} y^{\prime } = 2 x y \]

2846

\[ {} x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

2847

\[ {} \sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

2848

\[ {} \left (1+x \right ) y^{\prime }-1+y = 0 \]

2849

\[ {} \tan \left (x \right ) y^{\prime }-y = 1 \]

2850

\[ {} y+3+\cot \left (x \right ) y^{\prime } = 0 \]

2851

\[ {} y^{\prime } = \frac {x}{y} \]

2852

\[ {} x^{\prime } = 1-\sin \left (2 t \right ) \]

2853

\[ {} y+x y^{\prime } = y^{2} \]

2854

\[ {} \sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0 \]

2855

\[ {} \sec \left (x \right ) \cos \left (y\right )^{2} = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

2856

\[ {} y+x y^{\prime } = x y \left (y^{\prime }-1\right ) \]

2857

\[ {} x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

2858

\[ {} y = x y+x^{2} y^{\prime } \]

2859

\[ {} \tan \left (x \right ) \sin \left (x \right )^{2}+\cos \left (x \right )^{2} \cot \left (y\right ) y^{\prime } = 0 \]

2860

\[ {} y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

2861

\[ {} y^{\prime } = \frac {y}{x} \]

2862

\[ {} x y^{\prime }+2 y = 0 \]

2863

\[ {} \sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

2864

\[ {} x^{2} y^{\prime }+y^{2} = 0 \]

2865

\[ {} y^{\prime } = {\mathrm e}^{y} \]

2866

\[ {} {\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1 \]

2867

\[ {} 1+y^{2} = \frac {y^{\prime }}{x^{3} \left (x -1\right )} \]

2868

\[ {} x^{2}+3 x y^{\prime } = y^{3}+2 y \]

2869

\[ {} \left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]

2870

\[ {} \left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]

2871

\[ {} x +y = x y^{\prime } \]

2872

\[ {} \left (x +y\right ) y^{\prime }+x = y \]

2873

\[ {} x y^{\prime }-y = \sqrt {x y} \]

2874

\[ {} y^{\prime } = \frac {2 x -y}{x +4 y} \]

2875

\[ {} x y^{\prime }-y = \sqrt {x^{2}-y^{2}} \]

2876

\[ {} x +y y^{\prime } = 2 y \]

2877

\[ {} x y^{\prime }-y+\sqrt {y^{2}-x^{2}} = 0 \]

2878

\[ {} x^{2}+y^{2} = x y y^{\prime } \]

2879

\[ {} \left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0 \]

2880

\[ {} y+x y^{\prime } = 2 \sqrt {x y} \]

2881

\[ {} x +y+\left (x -y\right ) y^{\prime } = 0 \]

2882

\[ {} y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (y^{2}+x y+x^{2}\right ) = 0 \]

2883

\[ {} x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \]

2884

\[ {} y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \]

2885

\[ {} x^{2}+y^{2} = 2 x y y^{\prime } \]

2886

\[ {} \left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \]

2887

\[ {} x \,{\mathrm e}^{\frac {y}{x}}+y = x y^{\prime } \]

2888

\[ {} y^{\prime } = \frac {x +y}{x -y} \]

2889

\[ {} y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

2890

\[ {} \left (3 x y-2 x^{2}\right ) y^{\prime } = 2 y^{2}-x y \]

2891

\[ {} y^{\prime } = \frac {y}{x -k \sqrt {x^{2}+y^{2}}} \]

2892

\[ {} y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \]

2893

\[ {} y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \]

2894

\[ {} x +y-\left (x -y+2\right ) y^{\prime } = 0 \]

2895

\[ {} x +\left (x -2 y+2\right ) y^{\prime } = 0 \]

2896

\[ {} 2 x -y+1+\left (x +y\right ) y^{\prime } = 0 \]

2897

\[ {} x -y+2+\left (x +y-1\right ) y^{\prime } = 0 \]

2898

\[ {} x -y+\left (y-x +1\right ) y^{\prime } = 0 \]

2899

\[ {} y^{\prime } = \frac {x +y-1}{x -y-1} \]

2900

\[ {} x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]