6.62 Problems 6101 to 6200

Table 6.123: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

6101

\[ {}\left (1+y\right ) y^{\prime } = y \]

6102

\[ {}y^{\prime }-x y = x \]

6103

\[ {}2 y^{\prime } = 3 \left (y-2\right )^{{1}/{3}} \]

6104

\[ {}\left (x +x y\right ) y^{\prime }+y = 0 \]

6105

\[ {}y^{\prime }+y = {\mathrm e}^{x} \]

6106

\[ {}x^{2} y^{\prime }+3 x y = 1 \]

6107

\[ {}y^{\prime }+2 x y-x \,{\mathrm e}^{-x^{2}} = 0 \]

6108

\[ {}2 x y^{\prime }+y = 2 x^{{5}/{2}} \]

6109

\[ {}\cos \left (x \right ) y^{\prime }+y = \cos \left (x \right )^{2} \]

6110

\[ {}y^{\prime }+\frac {y}{\sqrt {x^{2}+1}} = \frac {1}{x +\sqrt {x^{2}+1}} \]

6111

\[ {}\left (1+{\mathrm e}^{x}\right ) y^{\prime }+2 y \,{\mathrm e}^{x} = \left (1+{\mathrm e}^{x}\right ) {\mathrm e}^{x} \]

6112

\[ {}x \ln \left (x \right ) y^{\prime }+y = \ln \left (x \right ) \]

6113

\[ {}\left (-x^{2}+1\right ) y^{\prime } = x y+2 x \sqrt {-x^{2}+1} \]

6114

\[ {}y^{\prime }+y \tanh \left (x \right ) = 2 \,{\mathrm e}^{x} \]

6115

\[ {}y^{\prime }+y \cos \left (x \right ) = \sin \left (2 x \right ) \]

6116

\[ {}x^{\prime } = \cos \left (y \right )-x \tan \left (y \right ) \]

6117

\[ {}x^{\prime }+x-{\mathrm e}^{y} = 0 \]

6118

\[ {}x^{\prime } = \frac {3 y^{{2}/{3}}-x}{3 y} \]

6119

\[ {}y^{\prime }+y = x y^{{2}/{3}} \]

6120

\[ {}y^{\prime }+\frac {y}{x} = 2 x^{{3}/{2}} \sqrt {y} \]

6121

\[ {}3 y^{2} y^{\prime } x +3 y^{3} = 1 \]

6122

\[ {}2 x \,{\mathrm e}^{3 y}+{\mathrm e}^{x}+\left (3 x^{2} {\mathrm e}^{3 y}-y^{2}\right ) y^{\prime } = 0 \]

6123

\[ {}\left (x -y\right ) y^{\prime }+x +y+1 = 0 \]

6124

\[ {}\cos \left (x \right ) \cos \left (y\right )+\sin \left (x \right )^{2}-\left (\sin \left (x \right ) \sin \left (y\right )+\cos \left (y\right )^{2}\right ) y^{\prime } = 0 \]

6125

\[ {}x^{2} y^{\prime }+y^{2}-x y = 0 \]

6126

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

6127

\[ {}x y+\left (y^{2}-x^{2}\right ) y^{\prime } = 0 \]

6128

\[ {}y^{2}-x y+\left (x^{2}+x y\right ) y^{\prime } = 0 \]

6129

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

6130

\[ {}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right ) \]

6131

\[ {}\left (x -1\right ) y^{\prime }+y-\frac {1}{x^{2}}+\frac {2}{x^{3}} = 0 \]

6132

\[ {}y^{\prime } = x y^{2}-\frac {2 y}{x}-\frac {1}{x^{3}} \]

6133

\[ {}y^{\prime } = \frac {2 y^{2}}{x}+\frac {y}{x}-2 x \]

6134

\[ {}y^{\prime } = {\mathrm e}^{-x} y^{2}+y-{\mathrm e}^{x} \]

6135

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

6136

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6137

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

6138

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

6139

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

6140

\[ {}y^{\prime \prime }+16 y = 0 \]

6141

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

6142

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

6143

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

6144

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

6145

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

6146

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

6147

\[ {}y^{\prime \prime \prime }+y = 0 \]

6148

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0 \]

6149

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0 \]

6150

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

6151

\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \]

6152

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 16 \]

6153

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x} \]

6154

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 24 \,{\mathrm e}^{-3 x} \]

6155

\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x} \]

6156

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 12 \,{\mathrm e}^{-x} \]

6157

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]

6158

\[ {}y^{\prime \prime }-16 y = 40 \,{\mathrm e}^{4 x} \]

6159

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

6160

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

6161

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right ) \]

6162

\[ {}y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right ) \]

6163

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]

6164

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right ) \]

6165

\[ {}5 y^{\prime \prime }+12 y^{\prime }+20 y = 120 \sin \left (2 x \right ) \]

6166

\[ {}y^{\prime \prime }+9 y = 30 \sin \left (3 x \right ) \]

6167

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]

6168

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = 60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right ) \]

6169

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right ) \]

6170

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = 30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right ) \]

6171

\[ {}5 y^{\prime \prime }+6 y^{\prime }+2 y = x^{2}+6 x \]

6172

\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \]

6173

\[ {}y^{\prime \prime }+y = 2 x \,{\mathrm e}^{x} \]

6174

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 12 x \,{\mathrm e}^{3 x} \]

6175

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 16 x^{2} {\mathrm e}^{-x} \]

6176

\[ {}y^{\prime \prime }+y = 8 x \sin \left (x \right ) \]

6177

\[ {}y^{\prime \prime }+y = x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \]

6178

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x}+6 x -5 \]

6179

\[ {}y^{\prime \prime }-y = \sinh \left (x \right ) \]

6180

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )+4 x \cos \left (x \right ) \]

6181

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \]

6182

\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \]

6183

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

6184

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

6185

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

6186

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

6187

\[ {}y^{\prime \prime }+2 x y^{\prime } = 0 \]

6188

\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

6189

\[ {}x y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3} \]

6190

\[ {}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right ) \]

6191

\[ {}k = \frac {y^{\prime \prime }}{\left (1+y^{\prime }\right )^{{3}/{2}}} \]

6192

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

6193

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6194

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

6195

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+6 y = 0 \]

6196

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 8 x^{4} \]

6197

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x -\frac {1}{x} \]

6198

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 2 x^{3} \]

6199

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 6 \ln \left (x \right ) x^{2} \]

6200

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]