6.61 Problems 6001 to 6100

Table 6.121: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

6001

\[ {}r^{\prime \prime } = -\frac {k}{r^{2}} \]

6002

\[ {}y^{\prime \prime } = \frac {3 k y^{2}}{2} \]

6003

\[ {}y^{\prime \prime } = 2 k y^{3} \]

6004

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2}-y^{\prime } = 0 \]

6005

\[ {}r^{\prime \prime } = \frac {h^{2}}{r^{3}}-\frac {k}{r^{2}} \]

6006

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

6007

\[ {}y y^{\prime \prime }-3 {y^{\prime }}^{2} = 0 \]

6008

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

6009

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

6010

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

6011

\[ {}y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]

6012

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

6013

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

6014

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

6015

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

6016

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

6017

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

6018

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime } = 0 \]

6019

\[ {}-a y^{3}-\frac {b}{x^{{3}/{2}}}+y^{\prime } = 0 \]

6020

\[ {}a x y^{3}+b y^{2}+y^{\prime } = 0 \]

6021

\[ {}y^{\prime }-x^{a} y^{3}+3 y^{2}-x^{-a} y-x^{-2 a}+a \,x^{-a -1} = 0 \]

6022

\[ {}y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {f \left (x \right ) a +b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )} = 0 \]

6023

\[ {}x^{2} y^{\prime }+x y^{3}+y^{2} a = 0 \]

6024

\[ {}\left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2} = 0 \]

6025

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

6026

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6027

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

6028

\[ {}{y^{\prime }}^{2} \left (-x^{2}+1\right )+1 = 0 \]

6029

\[ {}y^{\prime } = {\mathrm e}^{a x}+a y \]

6030

\[ {}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \]

6031

\[ {}x \left (1-y\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

6032

\[ {}y^{\prime } = a y^{2} x \]

6033

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

6034

\[ {}x y \left (x^{2}+1\right ) y^{\prime } = 1+y^{2} \]

6035

\[ {}\frac {x}{1+y} = \frac {y y^{\prime }}{1+x} \]

6036

\[ {}y^{\prime }+y^{2} b^{2} = a^{2} \]

6037

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

6038

\[ {}\sin \left (x \right ) \cos \left (y\right ) = \cos \left (x \right ) \sin \left (y\right ) y^{\prime } \]

6039

\[ {}a x y^{\prime }+2 y = x y y^{\prime } \]

6040

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

6041

\[ {}y^{\prime \prime }+x y = 0 \]

6042

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

6043

\[ {}x y^{\prime \prime }+2 y^{\prime }+a^{3} x^{2} y = 2 \]

6044

\[ {}y^{\prime \prime }+a \,x^{2} y = 1+x \]

6045

\[ {}x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

6046

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

6047

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

6048

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

6049

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

6050

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

6051

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (\left (1-n \right ) x -\left (6-4 n \right ) x^{2}\right ) y^{\prime }+n \left (1-n \right ) x y = 0 \]

6052

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

6053

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime \prime }+x y^{\prime }-n^{2} y = 0 \]

6054

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+a^{2} y = 0 \]

6055

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

6056

\[ {}x y^{\prime \prime }+y^{\prime }+p x y = 0 \]

6057

\[ {}x y^{\prime \prime }+y = 0 \]

6058

\[ {}x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0 \]

6059

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

6060

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }-y = 0 \]

6061

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-3 x^{2}+1\right ) y^{\prime }-x y = 0 \]

6062

\[ {}y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}} = 0 \]

6063

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

6064

\[ {}x \left (-x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+x y = 0 \]

6065

\[ {}4 x \left (1-x \right ) y^{\prime \prime }-4 y^{\prime }-y = 0 \]

6066

\[ {}x^{3} y^{\prime \prime }+y = x^{{3}/{2}} \]

6067

\[ {}2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

6068

\[ {}\left (-x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }+2 y = 3 x^{2} \]

6069

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

6070

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

6071

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

6072

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

6073

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+4 y = 0 \]

6074

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

6075

\[ {}y^{\prime }+y^{2} = \frac {a^{2}}{x^{4}} \]

6076

\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0 \]

6077

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

6078

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

6079

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

6080

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

6081

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

6082

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

6083

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

6084

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

6085

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

6086

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

6087

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

6088

\[ {}y^{\prime \prime }+y \,{\mathrm e}^{2 x} = n^{2} y \]

6089

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

6090

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

6091

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

6092

\[ {}y^{\prime } = y \]

6093

\[ {}x y^{\prime } = y \]

6094

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]

6095

\[ {}\sin \left (x \right ) y^{\prime } = y \ln \left (y\right ) \]

6096

\[ {}x y y^{\prime }+1+y^{2} = 0 \]

6097

\[ {}x y y^{\prime }-x y = y \]

6098

\[ {}y^{\prime } = \frac {2 x y^{2}+x}{x^{2} y-y} \]

6099

\[ {}y y^{\prime }+x y^{2}-8 x = 0 \]

6100

\[ {}y^{\prime }+2 x y^{2} = 0 \]