5.1.76 Problems 7501 to 7600

Table 5.151: First order ode

#

ODE

Mathematica

Maple

17338

\[ {}y^{\prime }-2 y = t^{2} {\mathrm e}^{2 t} \]

17339

\[ {}y^{\prime }+y = t \,{\mathrm e}^{-t}+1 \]

17340

\[ {}y^{\prime }+\frac {y}{t} = 5+\cos \left (2 t \right ) \]

17341

\[ {}y^{\prime }-2 y = 3 \,{\mathrm e}^{t} \]

17342

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

17343

\[ {}y^{\prime }+2 t y = 16 t \,{\mathrm e}^{-t^{2}} \]

17344

\[ {}\left (t^{2}+1\right ) y^{\prime }+4 t y = \frac {1}{\left (t^{2}+1\right )^{2}} \]

17345

\[ {}2 y^{\prime }+y = 3 t \]

17346

\[ {}t y^{\prime }-y = t^{3} {\mathrm e}^{-t} \]

17347

\[ {}y^{\prime }+y = 5 \sin \left (2 t \right ) \]

17348

\[ {}2 y^{\prime }+y = 3 t^{2} \]

17349

\[ {}y^{\prime }-y = 2 t \,{\mathrm e}^{2 t} \]

17350

\[ {}y^{\prime }+2 y = t \,{\mathrm e}^{-2 t} \]

17351

\[ {}t y^{\prime }+4 y = t^{2}-t +1 \]

17352

\[ {}y^{\prime }+\frac {2 y}{t} = \frac {\cos \left (t \right )}{t^{2}} \]

17353

\[ {}y^{\prime }-2 y = {\mathrm e}^{2 t} \]

17354

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

17355

\[ {}t^{3} y^{\prime }+4 t^{2} y = {\mathrm e}^{-t} \]

17356

\[ {}t y^{\prime }+\left (t +1\right ) y = t \]

17357

\[ {}y^{\prime }-\frac {y}{3} = 3 \cos \left (t \right ) \]

17358

\[ {}2 y^{\prime }-y = {\mathrm e}^{\frac {t}{3}} \]

17359

\[ {}3 y^{\prime }-2 y = {\mathrm e}^{-\frac {\pi t}{2}} \]

17360

\[ {}t y^{\prime }+\left (t +1\right ) y = 2 t \,{\mathrm e}^{-t} \]

17361

\[ {}t y^{\prime }+2 y = \frac {\sin \left (t \right )}{t} \]

17362

\[ {}\sin \left (t \right ) y^{\prime }+y \cos \left (t \right ) = {\mathrm e}^{t} \]

17363

\[ {}y^{\prime }+\frac {y}{2} = 2 \cos \left (t \right ) \]

17364

\[ {}y^{\prime }+\frac {4 y}{3} = 1-\frac {t}{4} \]

17365

\[ {}y^{\prime }+\frac {y}{4} = 3+2 \cos \left (2 t \right ) \]

17366

\[ {}y^{\prime }-y = 1+3 \sin \left (t \right ) \]

17367

\[ {}y^{\prime }-\frac {3 y}{2} = 3 t +3 \,{\mathrm e}^{t} \]

17368

\[ {}y^{\prime }-6 y = t^{6} {\mathrm e}^{6 t} \]

17369

\[ {}y^{\prime }+\frac {y}{t} = 3 \cos \left (2 t \right ) \]

17370

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

17371

\[ {}2 y^{\prime }+y = 3 t^{2} \]

17372

\[ {}\left (t -3\right ) y^{\prime }+\ln \left (t \right ) y = 2 t \]

17373

\[ {}t \left (t -4\right ) y^{\prime }+y = 0 \]

17374

\[ {}y^{\prime }+\tan \left (t \right ) y = \sin \left (t \right ) \]

17375

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]

17376

\[ {}\left (-t^{2}+4\right ) y^{\prime }+2 t y = 3 t^{2} \]

17377

\[ {}\ln \left (t \right ) y^{\prime }+y = \cot \left (t \right ) \]

17378

\[ {}y^{\prime } = \frac {t -y}{2 t +5 y} \]

17379

\[ {}y^{\prime } = \sqrt {1-t^{2}-y^{2}} \]

17380

\[ {}y^{\prime } = \frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \]

17381

\[ {}y^{\prime } = \left (t^{2}+y^{2}\right )^{{3}/{2}} \]

17382

\[ {}y^{\prime } = \frac {t^{2}+1}{3 y-y^{2}} \]

17383

\[ {}y^{\prime } = \frac {\cot \left (t \right ) y}{y+1} \]

17384

\[ {}y^{\prime } = y^{{1}/{3}} \]

17385

\[ {}y^{\prime } = -\frac {t}{2}+\frac {\sqrt {t^{2}+4 y}}{2} \]

17386

\[ {}y^{\prime } = -\frac {4 t}{y} \]

17387

\[ {}y^{\prime } = 2 t y^{2} \]

17388

\[ {}y^{\prime }+y^{3} = 0 \]

17389

\[ {}y^{\prime } = \frac {t^{2}}{y \left (t^{3}+1\right )} \]

17390

\[ {}y^{\prime } = t y \left (3-y\right ) \]

17391

\[ {}y^{\prime } = y \left (3-t y\right ) \]

17392

\[ {}y^{\prime } = -y \left (3-t y\right ) \]

17393

\[ {}y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t \le 1 \\ 0 & 1<t \end {array}\right . \]

17394

\[ {}y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le t \le 1 \\ 1 & 1<t \end {array}\right .\right ) y = 0 \]

17395

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

17396

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

17397

\[ {}3 x^{2}-2 x y+2+\left (6 y^{2}-x^{2}+3\right ) y^{\prime } = 0 \]

17398

\[ {}2 x y^{2}+2 y+\left (2 x^{2} y+2 x \right ) y^{\prime } = 0 \]

17399

\[ {}y^{\prime } = -\frac {2 y+4 x}{2 x +3 y} \]

17400

\[ {}y^{\prime } = -\frac {4 x -2 y}{2 x -3 y} \]

17401

\[ {}{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left ({\mathrm e}^{x} \cos \left (y\right )+2 \cos \left (x \right )\right ) y^{\prime } = 0 \]

17402

\[ {}{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

17403

\[ {}y \,{\mathrm e}^{x y} \cos \left (2 x \right )-2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+2 x +\left (x \,{\mathrm e}^{x y} \cos \left (2 x \right )-3\right ) y^{\prime } = 0 \]

17404

\[ {}\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

17405

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

17406

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

17407

\[ {}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0 \]

17408

\[ {}9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime } = 0 \]

17409

\[ {}x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

17410

\[ {}\frac {\sin \left (y\right )}{y}-2 \sin \left (x \right ) {\mathrm e}^{-x}+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y} = 0 \]

17411

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

17412

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

17413

\[ {}3 x^{2} y+2 x y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

17414

\[ {}y^{\prime } = {\mathrm e}^{2 x}+y-1 \]

17415

\[ {}\frac {y^{\prime }}{\frac {x}{y}-\sin \left (y\right )} = 0 \]

17416

\[ {}y+\left (2 x y-{\mathrm e}^{-2 y}\right ) y^{\prime } = 0 \]

17417

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

17418

\[ {}\frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

17419

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

17420

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

17421

\[ {}y y^{\prime } = 1+x \]

17422

\[ {}\left (y^{4}+1\right ) y^{\prime } = x^{4}+1 \]

17423

\[ {}\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{3 x^{2} y+y^{3}} = 1 \]

17424

\[ {}x \left (x -1\right ) y^{\prime } = y \left (1+y\right ) \]

17425

\[ {}\sqrt {x^{2}-y^{2}}+y = x y^{\prime } \]

17426

\[ {}x y y^{\prime } = \left (x +y\right )^{2} \]

17427

\[ {}y^{\prime } = \frac {4 y-7 x}{5 x -y} \]

17428

\[ {}x y^{\prime }-4 \sqrt {y^{2}-x^{2}} = y \]

17429

\[ {}y^{\prime } = \frac {y^{4}+2 x y^{3}-3 x^{2} y^{2}-2 x^{3} y}{2 x^{2} y^{2}-2 x^{3} y-2 x^{4}} \]

17430

\[ {}\left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}} \]

17431

\[ {}x y y^{\prime } = x^{2}+y^{2} \]

17432

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

17433

\[ {}t y^{\prime }+y = t^{2} y^{2} \]

17434

\[ {}y^{\prime } = y \left (t y^{3}-1\right ) \]

17435

\[ {}y^{\prime }+\frac {3 y}{t} = t^{2} y^{2} \]

17436

\[ {}t^{2} y^{\prime }+2 t y-y^{3} = 0 \]

17437

\[ {}5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right ) \]