5.1.75 Problems 7401 to 7500

Table 5.149: First order ode

#

ODE

Mathematica

Maple

16851

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+x y+1 \]

16852

\[ {}\left (1+{y^{\prime }}^{2}\right ) y^{2}-4 y y^{\prime }-4 x = 0 \]

16853

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

16854

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

16855

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

16856

\[ {}y^{\prime } = y^{{2}/{3}}+a \]

16857

\[ {}\left (x y^{\prime }+y\right )^{2}+3 x^{5} \left (x y^{\prime }-2 y\right ) = 0 \]

16858

\[ {}y \left (y-2 x y^{\prime }\right )^{2} = 2 y^{\prime } \]

16859

\[ {}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \]

16860

\[ {}\left (y^{\prime }-1\right )^{2} = y^{2} \]

16861

\[ {}y = {y^{\prime }}^{2}-x y^{\prime }+x \]

16862

\[ {}\left (x y^{\prime }+y\right )^{2} = y^{\prime } y^{2} \]

16863

\[ {}y^{2} {y^{\prime }}^{2}+y^{2} = 1 \]

16864

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

16865

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

16866

\[ {}y = x y^{\prime }+\sqrt {a^{2} {y^{\prime }}^{2}+b^{2}} \]

16867

\[ {}y^{\prime } = \left (x -y\right )^{2}+1 \]

16868

\[ {}x \sin \left (x \right ) y^{\prime }+\left (\sin \left (x \right )-x \cos \left (x \right )\right ) y = \sin \left (x \right ) \cos \left (x \right )-x \]

16869

\[ {}y^{\prime }+y \cos \left (x \right ) = y^{n} \sin \left (2 x \right ) \]

16870

\[ {}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0 \]

16871

\[ {}5 x y-4 y^{2}-6 x^{2}+\left (y^{2}-8 x y+\frac {5 x^{2}}{2}\right ) y^{\prime } = 0 \]

16872

\[ {}3 x y^{2}-x^{2}+\left (3 x^{2} y-6 y^{2}-1\right ) y^{\prime } = 0 \]

16873

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

16874

\[ {}2 x y \,{\mathrm e}^{x^{2}}-x \sin \left (x \right )+{\mathrm e}^{x^{2}} y^{\prime } = 0 \]

16875

\[ {}y^{\prime } = \frac {1}{2 x -y^{2}} \]

16876

\[ {}x^{2}+x y^{\prime } = 3 x +y^{\prime } \]

16877

\[ {}x y y^{\prime }-y^{2} = x^{4} \]

16878

\[ {}\frac {1}{y^{2}-x y+x^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

16879

\[ {}\left (2 x -1\right ) y^{\prime }-2 y = \frac {1-4 x}{x^{2}} \]

16880

\[ {}x -y+3+\left (3 x +y+1\right ) y^{\prime } = 0 \]

16881

\[ {}y^{\prime }+\cos \left (\frac {x}{2}+\frac {y}{2}\right ) = \cos \left (\frac {x}{2}-\frac {y}{2}\right ) \]

16882

\[ {}y^{\prime } \left (3 x^{2}-2 x \right )-y \left (6 x -2\right ) = 0 \]

16883

\[ {}y^{2} y^{\prime } x -y^{3} = \frac {x^{4}}{3} \]

16884

\[ {}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

16885

\[ {}x^{2}+y^{2}-x y y^{\prime } = 0 \]

16886

\[ {}x -y+2+\left (x -y+3\right ) y^{\prime } = 0 \]

16887

\[ {}x y^{2}+y-x y^{\prime } = 0 \]

16888

\[ {}x^{2}+y^{2}+2 x +2 y y^{\prime } = 0 \]

16889

\[ {}\left (x -1\right ) \left (y^{2}-y+1\right ) = \left (y-1\right ) \left (x^{2}+x +1\right ) y^{\prime } \]

16890

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

16891

\[ {}y \cos \left (x \right )+\left (2 y-\sin \left (x \right )\right ) y^{\prime } = 0 \]

16892

\[ {}y^{\prime }-1 = {\mathrm e}^{x +2 y} \]

16893

\[ {}2 x^{5}+4 x^{3} y-2 x y^{2}+\left (y^{2}+2 x^{2} y-x^{4}\right ) y^{\prime } = 0 \]

16894

\[ {}x^{2} y^{n} y^{\prime } = 2 x y^{\prime }-y \]

16895

\[ {}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2} \]

16896

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

16897

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

16898

\[ {}\sin \left (\ln \left (x \right )\right )-\cos \left (\ln \left (y\right )\right ) y^{\prime } = 0 \]

16899

\[ {}y^{\prime } = \sqrt {\frac {9 y^{2}-6 y+2}{x^{2}-2 x +5}} \]

16900

\[ {}\left (5 x -7 y+1\right ) y^{\prime }+x +y-1 = 0 \]

16901

\[ {}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

16902

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

16903

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

16904

\[ {}4 x^{2} {y^{\prime }}^{2}-y^{2} = x y^{3} \]

16905

\[ {}y^{\prime }+x {y^{\prime }}^{2}-y = 0 \]

16910

\[ {}{y^{\prime }}^{4} = 1 \]

16925

\[ {}x y = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

17283

\[ {}x^{\prime }+3 x = {\mathrm e}^{-2 t} \]

17284

\[ {}x^{\prime }-3 x = 3 t^{3}+3 t^{2}+2 t +1 \]

17285

\[ {}x^{\prime }-x = \cos \left (t \right )-\sin \left (t \right ) \]

17286

\[ {}2 x^{\prime }+6 x = {\mathrm e}^{-3 t} t \]

17287

\[ {}x^{\prime }+x = 2 \sin \left (t \right ) \]

17300

\[ {}y^{\prime } = \frac {x^{4}}{y} \]

17301

\[ {}y^{\prime } = \frac {x^{2} \left (x^{3}+1\right )}{y} \]

17302

\[ {}y^{\prime }+y^{3} \sin \left (x \right ) = 0 \]

17303

\[ {}y^{\prime } = \frac {7 x^{2}-1}{7+5 y} \]

17304

\[ {}y^{\prime } = \sin \left (2 x \right )^{2} \cos \left (y\right )^{2} \]

17305

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

17306

\[ {}y y^{\prime } = \left (x y^{2}+x \right ) {\mathrm e}^{x^{2}} \]

17307

\[ {}y^{\prime } = \frac {x^{2}+{\mathrm e}^{-x}}{y^{2}-{\mathrm e}^{y}} \]

17308

\[ {}y^{\prime } = \frac {x^{2}}{1+y^{2}} \]

17309

\[ {}y^{\prime } = \frac {\sec \left (x \right )^{2}}{y^{3}+1} \]

17310

\[ {}y^{\prime } = 4 \sqrt {x y} \]

17311

\[ {}y^{\prime } = x \left (y-y^{2}\right ) \]

17312

\[ {}y^{\prime } = \left (1-12 x \right ) y^{2} \]

17313

\[ {}y^{\prime } = \frac {3-2 x}{y} \]

17314

\[ {}x +y \,{\mathrm e}^{-x} y^{\prime } = 0 \]

17315

\[ {}r^{\prime } = \frac {r^{2}}{\theta } \]

17316

\[ {}y^{\prime } = \frac {3 x}{y+x^{2} y} \]

17317

\[ {}y^{\prime } = \frac {2 x}{1+2 y} \]

17318

\[ {}y^{\prime } = 2 x y^{2}+4 y^{2} x^{3} \]

17319

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-3 y} \]

17320

\[ {}y^{\prime } = \left (1+y^{2}\right ) \tan \left (2 x \right ) \]

17321

\[ {}y^{\prime } = \frac {x \left (x^{2}+1\right ) y^{5}}{6} \]

17322

\[ {}y^{\prime } = \frac {3 x^{2}-{\mathrm e}^{x}}{2 y-11} \]

17323

\[ {}x^{2} y^{\prime } = y-x y \]

17324

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x}-{\mathrm e}^{x}}{3+4 y} \]

17325

\[ {}2 y y^{\prime } = \frac {x}{\sqrt {x^{2}-4}} \]

17326

\[ {}\sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]

17327

\[ {}y^{2} \sqrt {-x^{2}+1}\, y^{\prime } = \arcsin \left (x \right ) \]

17328

\[ {}y^{\prime } = \frac {3 x^{2}+1}{12 y^{2}-12 y} \]

17329

\[ {}y^{\prime } = \frac {2 x^{2}}{2 y^{2}-6} \]

17330

\[ {}y^{\prime } = 2 y^{2}+x y^{2} \]

17331

\[ {}y^{\prime } = \frac {6-{\mathrm e}^{x}}{3+2 y} \]

17332

\[ {}y^{\prime } = \frac {2 \cos \left (2 x \right )}{10+2 y} \]

17333

\[ {}y^{\prime } = 2 \left (1+x \right ) \left (1+y^{2}\right ) \]

17334

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{3} \]

17335

\[ {}y^{\prime } = \frac {t y \left (4-y\right )}{t +1} \]

17336

\[ {}y^{\prime } = \frac {a y+b}{c y+d} \]

17337

\[ {}y^{\prime }+4 y = t +{\mathrm e}^{-2 t} \]