5.1.77 Problems 7601 to 7700

Table 5.153: First order ode

#

ODE

Mathematica

Maple

17438

\[ {}3 t y^{\prime }+9 y = 2 t y^{{5}/{3}} \]

17439

\[ {}y^{\prime } = y+\sqrt {y} \]

17440

\[ {}y^{\prime } = r y-k^{2} y^{2} \]

17441

\[ {}y^{\prime } = a y+b y^{3} \]

17442

\[ {}y^{\prime }+3 t y = 4-4 t^{2}+y^{2} \]

17443

\[ {}\left (3 x-y \right ) x^{\prime }+9 y -2 x = 0 \]

17444

\[ {}1 = \left (3 \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

17445

\[ {}y^{\prime }-4 \,{\mathrm e}^{x} y^{2} = y \]

17446

\[ {}x y^{\prime }+\left (1+x \right ) y = x \]

17447

\[ {}y^{\prime } = \frac {x y^{2}-\frac {\sin \left (2 x \right )}{2}}{\left (-x^{2}+1\right ) y} \]

17448

\[ {}\frac {\sqrt {x}\, y^{\prime }}{y} = 1 \]

17449

\[ {}5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0 \]

17450

\[ {}2 x y y^{\prime }+\ln \left (x \right ) = -y^{2}-1 \]

17451

\[ {}\left (2-x \right ) y^{\prime } = y+2 \left (2-x \right )^{5} \]

17452

\[ {}x y^{\prime } = -\frac {1}{\ln \left (x \right )} \]

17453

\[ {}x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y} \]

17454

\[ {}4 x y y^{\prime } = 8 x^{2}+5 y^{2} \]

17455

\[ {}y^{\prime }+y-y^{{1}/{4}} = 0 \]

17543

\[ {}x^{\prime } = \frac {x \sqrt {6 x-9}}{3} \]

17891

\[ {}y^{\prime } = 2 \]

17892

\[ {}y^{\prime } = -x^{3} \]

17894

\[ {}x \sqrt {1+y^{2}}+y y^{\prime } \sqrt {x^{2}+1} = 0 \]

17895

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

17896

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }+\sqrt {1-y^{2}} = 0 \]

17897

\[ {}y^{\prime } = \frac {2 x y}{x^{2}+y^{2}} \]

17898

\[ {}y^{\prime } = \frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \]

17899

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

17900

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

17901

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

17902

\[ {}3 y-7 x +7 = \left (3 x -7 y-3\right ) y^{\prime } \]

17903

\[ {}\left (x +2 y+1\right ) y^{\prime } = 4 y+2 x +3 \]

17904

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

17905

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

17906

\[ {}x y^{\prime }-4 y = x^{2} \sqrt {y} \]

17907

\[ {}y^{\prime } \cos \left (x \right ) = y \sin \left (x \right )+\cos \left (x \right )^{2} \]

17908

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

17909

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

17910

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

17911

\[ {}x y^{\prime }+y = x y^{2} \ln \left (x \right ) \]

17912

\[ {}y^{\prime }-\frac {x y}{2 x^{2}-2}-\frac {x}{2 y} = 0 \]

17913

\[ {}y^{\prime } \left (x^{2} y^{3}+x y\right ) = 1 \]

17914

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

17915

\[ {}y^{\prime } = \frac {y^{2}}{3}+\frac {2}{3 x^{2}} \]

17916

\[ {}y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}} = 0 \]

17917

\[ {}x y^{\prime }-3 y+y^{2} = 4 x^{2}-4 x \]

17918

\[ {}y^{\prime } = y^{2}+\frac {1}{x^{4}} \]

17919

\[ {}\left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime } = \left (1+y^{2}\right )^{{3}/{2}} \]

17920

\[ {}y^{\prime } \left (x^{2}+y^{2}+3\right ) = 2 x \left (2 y-\frac {x^{2}}{y}\right ) \]

17921

\[ {}y^{\prime } = \frac {x -y^{2}}{2 y \left (y^{2}+x \right )} \]

17922

\[ {}\left (x \left (x +y\right )+a^{2}\right ) y^{\prime } = y \left (x +y\right )+b^{2} \]

17923

\[ {}y^{\prime } = k y+f \left (x \right ) \]

17924

\[ {}y^{\prime } = y^{2}-x^{2} \]

17925

\[ {}\frac {x +y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {-x y^{\prime }+y}{x^{2}+y^{2}} = 0 \]

17926

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

17927

\[ {}\frac {\sin \left (\frac {x}{y}\right )}{y}-\frac {y \cos \left (\frac {y}{x}\right )}{x^{2}}+1+\left (\frac {\cos \left (\frac {y}{x}\right )}{x}-\frac {x \sin \left (\frac {x}{y}\right )}{y^{2}}+\frac {1}{y^{2}}\right ) y^{\prime } = 0 \]

17928

\[ {}\frac {1}{x}-\frac {y^{2}}{\left (x -y\right )^{2}}+\left (\frac {x^{2}}{\left (x -y\right )^{2}}-\frac {1}{y}\right ) y^{\prime } = 0 \]

17929

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

17930

\[ {}\left (x^{2} y^{2}-1\right ) y^{\prime }+2 x y^{3} = 0 \]

17931

\[ {}a x y^{\prime }+b y+x^{m} y^{n} \left (\alpha x y^{\prime }+\beta y\right ) = 0 \]

17932

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

17933

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

17934

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

17935

\[ {}2 x^{3}+3 x^{2} y+y^{2}-y^{3}+\left (2 y^{3}+3 x y^{2}+x^{2}-x^{3}\right ) y^{\prime } = 0 \]

17936

\[ {}y {y^{\prime }}^{2}+y^{\prime } \left (x -y\right )-x = 0 \]

17937

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = x^{2} y^{2}+x^{4} \]

17938

\[ {}{y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x^{3} y+x^{2} y^{2}+x y^{3}\right ) y^{\prime }-x^{3} y^{3} = 0 \]

17939

\[ {}x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

17940

\[ {}x {y^{\prime }}^{3} = 1+y^{\prime } \]

17941

\[ {}{y^{\prime }}^{3}-x^{3} \left (1-y^{\prime }\right ) = 0 \]

17942

\[ {}{y^{\prime }}^{3}+y^{3}-3 y y^{\prime } = 0 \]

17943

\[ {}y = {y^{\prime }}^{2} {\mathrm e}^{y^{\prime }} \]

17944

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

17945

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 \alpha \]

17946

\[ {}{y^{\prime }}^{4} = 4 y \left (x y^{\prime }-2 y\right )^{2} \]

17947

\[ {}y = 2 x y^{\prime }+\frac {x^{2}}{2}+{y^{\prime }}^{2} \]

17948

\[ {}y = \frac {k \left (x +y y^{\prime }\right )}{\sqrt {1+{y^{\prime }}^{2}}} \]

17949

\[ {}x = y y^{\prime }+a {y^{\prime }}^{2} \]

17950

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{3} \]

17951

\[ {}y = x y^{\prime }+y^{\prime }-{y^{\prime }}^{2} \]

17952

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

17953

\[ {}{y^{\prime }}^{2} \left (x^{2}-1\right )-2 x y y^{\prime }+y^{2}-1 = 0 \]

17954

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }+2 y = 0 \]

17955

\[ {}y^{\prime } = \sqrt {y-x} \]

17956

\[ {}y^{\prime } = \sqrt {y-x}+1 \]

17957

\[ {}y^{\prime } = \sqrt {y} \]

17958

\[ {}y^{\prime } = y \ln \left (y\right ) \]

17959

\[ {}y^{\prime } = y \ln \left (y\right )^{2} \]

17960

\[ {}y^{\prime } = -x +\sqrt {x^{2}+2 y} \]

17961

\[ {}y^{\prime } = -x -\sqrt {x^{2}+2 y} \]

17962

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

17963

\[ {}x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

17964

\[ {}y^{2} \left (y^{\prime }-1\right ) = \left (2-y^{\prime }\right )^{2} \]

17965

\[ {}{y^{\prime }}^{4} = 4 y \left (x y^{\prime }-2 y\right )^{2} \]

17966

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 x y = 0 \]

17967

\[ {}y = {y^{\prime }}^{2}-x y^{\prime }+\frac {x^{3}}{2} \]

17968

\[ {}y = 2 x y^{\prime }+\frac {x^{2}}{2}+{y^{\prime }}^{2} \]

17969

\[ {}{y^{\prime }}^{2}-y y^{\prime }+{\mathrm e}^{x} = 0 \]

18056

\[ {}y^{\prime } = 2 x \]

18057

\[ {}x y^{\prime } = 2 y \]

18058

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]