5.2.48 Problems 4701 to 4800

Table 5.263: Second order linear ODE

#

ODE

Mathematica

Maple

16343

\[ {}y^{\prime \prime }+16 y = \tan \left (2 t \right ) \]

16344

\[ {}y^{\prime \prime }+4 y = \tan \left (t \right ) \]

16345

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right ) \]

16346

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

16347

\[ {}y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2} \]

16348

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2} \]

16349

\[ {}y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t} \]

16350

\[ {}y^{\prime \prime }+y = \tan \left (t \right )^{2} \]

16351

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right ) \]

16352

\[ {}y^{\prime \prime }+9 y = \csc \left (3 t \right ) \]

16353

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right ) \]

16354

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

16355

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

16356

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

16357

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]

16358

\[ {}y^{\prime \prime }+4 y = f \left (t \right ) \]

16359

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

16360

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]

16361

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16362

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \]

16363

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

16364

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]

16365

\[ {}t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]

16366

\[ {}\left (\sin \left (t \right )-\cos \left (t \right ) t \right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \]

16440

\[ {}4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \]

16441

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16442

\[ {}2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

16443

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16444

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

16445

\[ {}9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]

16446

\[ {}2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

16447

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

16448

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

16449

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

16450

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

16451

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

16460

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}} \]

16461

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3} \]

16462

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}} \]

16463

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}} \]

16464

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x \]

16465

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right ) \]

16466

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8 \]

16467

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2} \]

16470

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16471

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16472

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16473

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

16478

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}} \]

16479

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right ) \]

16480

\[ {}4 x^{2} y^{\prime \prime }+y = x^{3} \]

16481

\[ {}9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x} \]

16482

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16483

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16484

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16489

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16490

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16491

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16492

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16493

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16494

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

16495

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16496

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16497

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2} \]

16498

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16499

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16506

\[ {}6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

16558

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16559

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16560

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16561

\[ {}\left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

16562

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16563

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

16564

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

16565

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16566

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

16567

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

16568

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16569

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

16570

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

16571

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

16575

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

16576

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

16577

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

16578

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

16579

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

16580

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{{\mathrm e}^{2 t}+1} \]

16581

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]

16582

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]

16583

\[ {}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t} \]

16584

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]

16589

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

16590

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

16591

\[ {}y^{\prime \prime }+16 y = 0 \]

16592

\[ {}y^{\prime \prime }+25 y = 0 \]

16593

\[ {}y^{\prime \prime }-4 y = t \]

16594

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t} \]

16595

\[ {}y^{\prime \prime }+9 y = \sin \left (3 t \right ) \]

16596

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \]

16597

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]