5.2.49 Problems 4801 to 4900

Table 5.265: Second order linear ODE

#

ODE

Mathematica

Maple

16598

\[ {}y^{\prime \prime }+y = \csc \left (t \right ) \]

16599

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

16600

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

16601

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

16602

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

16603

\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

16604

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16605

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16606

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

16607

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

16608

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

16609

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16610

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

16611

\[ {}5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16612

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

16613

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x \]

16623

\[ {}4 x^{\prime \prime }+9 x = 0 \]

16624

\[ {}9 x^{\prime \prime }+4 x = 0 \]

16625

\[ {}x^{\prime \prime }+64 x = 0 \]

16626

\[ {}x^{\prime \prime }+100 x = 0 \]

16627

\[ {}x^{\prime \prime }+x = 0 \]

16628

\[ {}x^{\prime \prime }+4 x = 0 \]

16629

\[ {}x^{\prime \prime }+16 x = 0 \]

16630

\[ {}x^{\prime \prime }+256 x = 0 \]

16631

\[ {}x^{\prime \prime }+9 x = 0 \]

16632

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]

16633

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

16634

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

16635

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

16636

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

16637

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

16638

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

16639

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

16640

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

16641

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]

16642

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

16643

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]

16644

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]

16645

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]

16646

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]

16647

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]

16660

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

16661

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

16662

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]

16663

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]

16906

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

16909

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

16911

\[ {}y^{\prime \prime }+y = 0 \]

16912

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

16917

\[ {}y^{\prime \prime } \left (x +2\right )^{5} = 1 \]

16918

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

16919

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

16920

\[ {}x y^{\prime \prime } = y^{\prime } \]

16921

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

16922

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

16923

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

16924

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

16935

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]

16952

\[ {}y^{\prime \prime }-y = 0 \]

16953

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

16955

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16956

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

16958

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

16960

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

16963

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16964

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

16974

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

16975

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

16976

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

16977

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

16978

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]

16979

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]

16980

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

16981

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

16982

\[ {}y^{\prime \prime }+25 y = \cos \left (5 x \right ) \]

16983

\[ {}y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right ) \]

16984

\[ {}y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right ) \]

16985

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \]

16986

\[ {}y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \]

16987

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right ) \]

16988

\[ {}y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right ) \]

16989

\[ {}y^{\prime \prime }+k^{2} y = k \]

17010

\[ {}y^{\prime \prime }+2 y^{\prime }+y = -2 \]

17011

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

17012

\[ {}y^{\prime \prime }+9 y = 9 \]

17018

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

17019

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

17020

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

17021

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x} \]

17022

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x} \]

17023

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

17024

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

17025

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x} \]

17026

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 1+x \]

17027

\[ {}y^{\prime \prime }+y^{\prime }+y = \left (x^{2}+x \right ) {\mathrm e}^{x} \]

17028

\[ {}y^{\prime \prime }+4 y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

17029

\[ {}y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

17030

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \sin \left (n x \right ) \]

17031

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (2 x \right ) \]

17032

\[ {}y^{\prime \prime }+a^{2} y = 2 \cos \left (m x \right )+3 \sin \left (m x \right ) \]