5.3.9 Problems 801 to 900

Table 5.301: Second order ode

#

ODE

Mathematica

Maple

3189

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{-x} \]

3190

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}-8 \]

3205

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

3206

\[ {}y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

3207

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

3210

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = {\mathrm e}^{x} x^{2} \]

3214

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2} \cos \left (x \right ) \]

3215

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right ) \]

3216

\[ {}y^{\prime \prime }-y = \sin \left (2 x \right ) x \]

3217

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

3218

\[ {}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

3219

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

3220

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

3221

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+y = 0 \]

3222

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+16 y = 0 \]

3223

\[ {}4 x^{2} y^{\prime \prime }-16 x y^{\prime }+25 y = 0 \]

3224

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+10 y = 0 \]

3225

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }-18 y = \ln \left (x \right ) \]

3226

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = \ln \left (x^{2}\right ) \]

3227

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{3} \]

3228

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 1-x \]

3230

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

3231

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = \ln \left (x \right ) x^{2} \]

3232

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+3 y = \left (x -1\right ) \ln \left (x \right ) \]

3244

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

3245

\[ {}y^{\prime \prime } = k^{2} y \]

3246

\[ {}x^{\prime \prime }+k^{2} x = 0 \]

3247

\[ {}y^{3} y^{\prime \prime }+4 = 0 \]

3248

\[ {}x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

3249

\[ {}x y^{\prime \prime } = x^{2}+1 \]

3250

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

3251

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

3252

\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

3253

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

3254

\[ {}x^{\prime \prime }+t x^{\prime } = t^{3} \]

3255

\[ {}x^{2} y^{\prime \prime } = x y^{\prime }+1 \]

3256

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

3257

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 1 \]

3258

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

3259

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

3260

\[ {}y^{\prime \prime } = y y^{\prime } \]

3261

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

3262

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

3263

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

3264

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

3265

\[ {}y y^{\prime \prime }+1 = {y^{\prime }}^{2} \]

3266

\[ {}y^{\prime \prime } = y \]

3267

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

3268

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

3269

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

3270

\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

3271

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

3272

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]

3273

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

3274

\[ {}y^{\prime \prime } = y^{3} \]

3275

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

3276

\[ {}y y^{\prime \prime }-y^{\prime } y^{2} = {y^{\prime }}^{2} \]

3277

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

3278

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

3279

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

3280

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]

3281

\[ {}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]

3282

\[ {}x^{\prime \prime }-k^{2} x = 0 \]

3283

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]

3284

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]

3483

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \]

3484

\[ {}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right ) \]

3485

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = 0 \]

3486

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

3487

\[ {}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t} \]

3488

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]

3489

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]

3490

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

3492

\[ {}\frac {y^{\prime \prime }}{y}-\frac {{y^{\prime }}^{2}}{y^{2}}+\frac {2 a \coth \left (2 a x \right ) y^{\prime }}{y} = 2 a^{2} \]

3493

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

3494

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+3 \left (1+x \right ) y^{\prime }+y = x^{2} \]

3495

\[ {}\left (x -2\right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \]

3496

\[ {}y^{\prime \prime }-y = x^{n} \]

3497

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x} \]

3500

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right ) \]

3558

\[ {}y^{\prime \prime }-25 y = 0 \]

3559

\[ {}y^{\prime \prime }+4 y = 0 \]

3560

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

3563

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

3564

\[ {}y^{\prime \prime }-9 y = 0 \]

3565

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

3566

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

3567

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

3568

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2} \]

3569

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \]

3570

\[ {}y^{\prime \prime }-\left (a +b \right ) y^{\prime }+y a b = 0 \]

3571

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

3572

\[ {}y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0 \]

3573

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

3574

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

3575

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

3576

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

3584

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

3585

\[ {}y^{\prime \prime } = x^{n} \]

3587

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]