5.3.13 Problems 1201 to 1300

Table 5.309: Second order ode

#

ODE

Mathematica

Maple

6016

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

6017

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

6018

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (1+y\right ) y^{\prime } = 0 \]

6026

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6030

\[ {}\left (1+{y^{\prime }}^{2}\right )^{3} = a^{2} {y^{\prime \prime }}^{2} \]

6076

\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0 \]

6077

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

6078

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

6079

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

6080

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

6081

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

6082

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

6083

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

6084

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

6085

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

6086

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

6087

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

6088

\[ {}y^{\prime \prime }+y \,{\mathrm e}^{2 x} = n^{2} y \]

6089

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

6090

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

6091

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

6135

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

6136

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6137

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

6138

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

6139

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

6140

\[ {}y^{\prime \prime }+16 y = 0 \]

6141

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

6142

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

6143

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

6144

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

6145

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

6146

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

6151

\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \]

6152

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 16 \]

6153

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x} \]

6154

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 24 \,{\mathrm e}^{-3 x} \]

6155

\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x} \]

6156

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 12 \,{\mathrm e}^{-x} \]

6157

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]

6158

\[ {}y^{\prime \prime }-16 y = 40 \,{\mathrm e}^{4 x} \]

6159

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

6160

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

6161

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right ) \]

6162

\[ {}y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right ) \]

6163

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]

6164

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right ) \]

6165

\[ {}5 y^{\prime \prime }+12 y^{\prime }+20 y = 120 \sin \left (2 x \right ) \]

6166

\[ {}y^{\prime \prime }+9 y = 30 \sin \left (3 x \right ) \]

6167

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]

6168

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = 60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right ) \]

6169

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right ) \]

6170

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = 30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right ) \]

6171

\[ {}5 y^{\prime \prime }+6 y^{\prime }+2 y = x^{2}+6 x \]

6172

\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \]

6173

\[ {}y^{\prime \prime }+y = 2 x \,{\mathrm e}^{x} \]

6174

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 12 x \,{\mathrm e}^{3 x} \]

6175

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 16 x^{2} {\mathrm e}^{-x} \]

6176

\[ {}y^{\prime \prime }+y = 8 x \sin \left (x \right ) \]

6177

\[ {}y^{\prime \prime }+y = x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \]

6178

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x}+6 x -5 \]

6179

\[ {}y^{\prime \prime }-y = \sinh \left (x \right ) \]

6180

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )+4 x \cos \left (x \right ) \]

6181

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{x}+\left (1-x \right ) \left ({\mathrm e}^{2 x}-1\right ) \]

6182

\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \]

6183

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

6184

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

6185

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

6186

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

6187

\[ {}y^{\prime \prime }+2 x y^{\prime } = 0 \]

6188

\[ {}2 y y^{\prime \prime } = {y^{\prime }}^{2} \]

6189

\[ {}x y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3} \]

6190

\[ {}{y^{\prime \prime }}^{2} = k^{2} \left (1+{y^{\prime }}^{2}\right ) \]

6191

\[ {}k = \frac {y^{\prime \prime }}{\left (y^{\prime }+1\right )^{{3}/{2}}} \]

6192

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

6193

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6194

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

6195

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+6 y = 0 \]

6196

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 8 x^{4} \]

6197

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x -\frac {1}{x} \]

6198

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 2 x^{3} \]

6199

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 6 \ln \left (x \right ) x^{2} \]

6200

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

6201

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 2 x \]

6202

\[ {}x^{2} \left (2-x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

6203

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6204

\[ {}x y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

6205

\[ {}3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \]

6206

\[ {}x^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

6207

\[ {}x \left (1+x \right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

6211

\[ {}r^{\prime \prime }-6 r^{\prime }+9 r = 0 \]

6213

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x} \cos \left (x \right ) \]

6215

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

6219

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

6220

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 26 \,{\mathrm e}^{3 x} \]

6221

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \]

6222

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 6 \,{\mathrm e}^{2 x} \]

6223

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{2 x} \]

6227

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \]

6231

\[ {}x \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right ) = y y^{\prime } \]