5.3.19 Problems 1801 to 1900

Table 5.321: Second order ode

#

ODE

Mathematica

Maple

8173

\[ {}y^{\prime \prime }+3 y^{\prime }-5 y = 1 \]

8174

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = -6 \,{\mathrm e}^{-t +\pi } \]

8175

\[ {}y^{\prime \prime }+2 y^{\prime }-y = t \,{\mathrm e}^{-t} \]

8176

\[ {}y^{\prime \prime }-y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

8177

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

8178

\[ {}y^{\prime \prime }+3 y^{\prime }+3 y = 2 \]

8179

\[ {}y^{\prime \prime }+y^{\prime }+2 y = t \]

8180

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = t \,{\mathrm e}^{2 t} \]

8181

\[ {}i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]

8219

\[ {}y^{\prime \prime }+y = 0 \]

8221

\[ {}y^{\prime \prime }-y = 0 \]

8223

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

8225

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

8287

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

8288

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

8289

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

8290

\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]

8291

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

8292

\[ {}y^{\prime }+x y^{\prime \prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

8293

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

8294

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

8295

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

8296

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

8297

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

8298

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

8299

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

8300

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

8301

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

8302

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

8303

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

8304

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]

8305

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

8306

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

8307

\[ {}y^{\prime \prime }+y = 0 \]

8308

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

8309

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

8310

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{2}+3\right ) y = 0 \]

8328

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]

8329

\[ {}y^{\prime \prime }-4 y^{\prime } = 6 \,{\mathrm e}^{3 t}-3 \,{\mathrm e}^{-t} \]

8330

\[ {}y^{\prime \prime }+y = \sqrt {2}\, \sin \left (\sqrt {2}\, t \right ) \]

8331

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{t} \]

8335

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

8338

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8339

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} {\mathrm e}^{2 t} \]

8340

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t \]

8341

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{3} \]

8342

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

8343

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

8344

\[ {}y^{\prime \prime }-y = {\mathrm e}^{t} \cos \left (t \right ) \]

8345

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = t +1 \]

8346

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8347

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]

8351

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

8352

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right ) \operatorname {Heaviside}\left (t -2 \pi \right ) \]

8353

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right ) \]

8354

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

8355

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 1-\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -4\right )+\operatorname {Heaviside}\left (t -6\right ) \]

8358

\[ {}y^{\prime \prime }+9 y = \cos \left (3 t \right ) \]

8359

\[ {}y^{\prime \prime }+y = \sin \left (t \right ) \]

8360

\[ {}y^{\prime \prime }+16 y = \left \{\begin {array}{cc} \cos \left (4 t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

8361

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ \sin \left (t \right ) & \frac {\pi }{2}\le t \end {array}\right . \]

8362

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]

8363

\[ {}2 y^{\prime \prime }+t y^{\prime }-2 y = 10 \]

8364

\[ {}y^{\prime \prime }+y = \sin \left (t \right )+t \sin \left (t \right ) \]

8367

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \]

8368

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2 \pi \right ) \]

8369

\[ {}y^{\prime \prime }+y = \delta \left (t -\frac {\pi }{2}\right )+\delta \left (t -\frac {3 \pi }{2}\right ) \]

8370

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right )+\delta \left (t -4 \pi \right ) \]

8371

\[ {}y^{\prime \prime }+2 y^{\prime } = \delta \left (t -1\right ) \]

8372

\[ {}y^{\prime \prime }-2 y^{\prime } = 1+\delta \left (t -2\right ) \]

8373

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -2 \pi \right ) \]

8374

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \delta \left (t -1\right ) \]

8375

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = \delta \left (t -\pi \right )+\delta \left (t -3 \pi \right ) \]

8376

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = {\mathrm e}^{t}+\delta \left (t -2\right )+\delta \left (t -4\right ) \]

8377

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

8378

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = \delta \left (t \right ) \]

8489

\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \]

8490

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

8491

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

8492

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

8493

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

8494

\[ {}\left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

8495

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

8496

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]

8497

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]

8498

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

8499

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

8500

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

8501

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

8502

\[ {}y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \]

8503

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

8504

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

8505

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

8506

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

8507

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

8508

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

8509

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

8510

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

8511

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

8512

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]