5.4.4 Problems 301 to 400

Table 5.421: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

2383

\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

2384

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

2385

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2386

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

2387

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

2388

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

2389

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

2390

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

2391

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

2392

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

2393

\[ {}y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

2394

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

2395

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2396

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2397

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

2398

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

2399

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

2400

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2401

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2431

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y = 0 \]

2432

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

2433

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

2434

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

2435

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2436

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2437

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

2438

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2439

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+2 y = 0 \]

2440

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

2543

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

2544

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]

2545

\[ {}y^{\prime \prime }-y = 0 \]

2546

\[ {}6 y^{\prime \prime }-7 y^{\prime }+y = 0 \]

2547

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

2548

\[ {}3 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

2549

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 0 \]

2550

\[ {}2 y^{\prime \prime }+y^{\prime }-10 y = 0 \]

2551

\[ {}5 y^{\prime \prime }+5 y^{\prime }-y = 0 \]

2552

\[ {}y^{\prime \prime }-6 y^{\prime }+y = 0 \]

2553

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

2554

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

2555

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y = 0 \]

2556

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

2557

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

2558

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

2559

\[ {}4 y^{\prime \prime }-y^{\prime }+y = 0 \]

2560

\[ {}y^{\prime \prime }+y^{\prime }+2 y = 0 \]

2561

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

2562

\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

2563

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

2564

\[ {}y^{\prime \prime }+w^{2} y = 0 \]

2565

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2566

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

2567

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

2568

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

2569

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

2570

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

2571

\[ {}6 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

2572

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

2573

\[ {}y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

2574

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

2575

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2576

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2577

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

2578

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

2579

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

2580

\[ {}t y^{\prime \prime }-\left (1+3 t \right ) y^{\prime }+3 y = 0 \]

2581

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2582

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2628

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

2629

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

2630

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

2631

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2632

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2633

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

2634

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2635

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+2 y = 0 \]

2636

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]

2637

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

2820

\[ {}z^{\prime \prime }+z^{3} = 0 \]

2821

\[ {}z^{\prime \prime }+z+z^{5} = 0 \]

2823

\[ {}z^{\prime \prime }+\frac {z}{1+z^{2}} = 0 \]

2824

\[ {}z^{\prime \prime }+z-2 z^{3} = 0 \]

2835

\[ {}y^{\prime \prime }+\lambda y = 0 \]

2836

\[ {}y^{\prime \prime }+\lambda y = 0 \]

2837

\[ {}y^{\prime \prime }-\lambda y = 0 \]

2838

\[ {}y^{\prime \prime }+\lambda y = 0 \]

2839

\[ {}y^{\prime \prime }-2 y^{\prime }+\left (\lambda +1\right ) y = 0 \]

2840

\[ {}y^{\prime \prime }+\lambda y = 0 \]

3059

\[ {}y^{\prime \prime }-4 y = 0 \]

3060

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 0 \]

3061

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

3062

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = 0 \]

3063

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

3064

\[ {}y^{\prime \prime }-2 y^{\prime }-y = 0 \]

3065

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

3066

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

3067

\[ {}2 y^{\prime \prime }+2 y^{\prime }-y = 0 \]

3088

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

3089

\[ {}y^{\prime \prime } = 0 \]