5.4.9 Problems 801 to 900

Table 5.431: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

8291

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

8292

\[ {}y^{\prime }+x y^{\prime \prime }+\left (x -\frac {4}{x}\right ) y = 0 \]

8293

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-4\right ) y = 0 \]

8294

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

8295

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (25 x^{2}-\frac {4}{9}\right ) y = 0 \]

8296

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0 \]

8297

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

8298

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

8299

\[ {}x y^{\prime \prime }-y^{\prime }+x y = 0 \]

8300

\[ {}x y^{\prime \prime }-5 y^{\prime }+x y = 0 \]

8301

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

8302

\[ {}4 x^{2} y^{\prime \prime }+\left (16 x^{2}+1\right ) y = 0 \]

8303

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

8304

\[ {}9 x^{2} y^{\prime \prime }+9 x y^{\prime }+\left (x^{6}-36\right ) y = 0 \]

8305

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

8306

\[ {}x y^{\prime \prime }+y^{\prime }-7 x^{3} y = 0 \]

8307

\[ {}y^{\prime \prime }+y = 0 \]

8308

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

8309

\[ {}16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

8310

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (16 x^{2}+3\right ) y = 0 \]

8328

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]

8335

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

8338

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8342

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

8343

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

8346

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8347

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]

8377

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

8489

\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \]

8490

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

8491

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

8492

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

8493

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

8494

\[ {}\left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

8495

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

8498

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

8499

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

8500

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

8501

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

8502

\[ {}y^{\prime \prime } \cos \left (x \right ) = y^{\prime } \]

8503

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

8504

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

8505

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

8506

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

8507

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

8508

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

8510

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

8511

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

8512

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

8513

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

8515

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

8516

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

8517

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

8518

\[ {}\left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

8519

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]

8520

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

8521

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right ) \]

8522

\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \]

8525

\[ {}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0 \]

8526

\[ {}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

8606

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

8607

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

8608

\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \]

8609

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

8610

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

8611

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

8612

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

8613

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

8614

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+5 y = 0 \]

8626

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

8657

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

8752

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8753

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

8760

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]

8761

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

8762

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

8763

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

8764

\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

8765

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

8766

\[ {}y^{\prime \prime } = 0 \]

8773

\[ {}y y^{\prime \prime } = 0 \]

8777

\[ {}y^{2} y^{\prime \prime } = 0 \]

8782

\[ {}a y y^{\prime \prime }+b y = 0 \]

8799

\[ {}y^{\prime \prime } = \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} \]

8800

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

8801

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

8802

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

8859

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

8881

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

8882

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

8883

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

8884

\[ {}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

8885

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

8954

\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

8956

\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

8957

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

8961

\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

8962

\[ {}y^{\prime \prime } = A y^{{2}/{3}} \]

8963

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

8964

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]